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Theoretical vs. Practical Expressivity

Brain: Why deep nets, Pinky?

Pinky: Expressivity, Brain!

Brain: What about learnability?
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Numerical Instability for Large Numbers of Regions

Figure: Random perturbation of example w/maximal number of regions.
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Theoretical Expressivity
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Practical Expressivity at Init
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Practical Expressivity
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How To Do Theory?

Goal. Characterize typical complexity of functions drawn from
µA,init, µA,train.

Intution. Probabilty measures in high dimensions are often
concentrated around low dimensional sets.

Idea. For networks with piecewise linear activations,
complexity of µA,init and µA,train encoded in corresponding
partition of input space.
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Overview

N − depth d ReLU net with nout = 1

x 7→ N (x) is continuous and piecewise linear function

Fixed weights/biases partition Rnin into convex pieces on
which N is linear

Goal. Understand average complexity of this partition

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



Overview

N − depth d ReLU net with nout = 1

x 7→ N (x) is continuous and piecewise linear function

Fixed weights/biases partition Rnin into convex pieces on
which N is linear

Goal. Understand average complexity of this partition

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



Overview

N − depth d ReLU net with nout = 1

x 7→ N (x) is continuous and piecewise linear function

Fixed weights/biases partition Rnin into convex pieces on
which N is linear

Goal. Understand average complexity of this partition

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



Overview

N − depth d ReLU net with nout = 1

x 7→ N (x) is continuous and piecewise linear function

Fixed weights/biases partition Rnin into convex pieces on
which N is linear

Goal. Understand average complexity of this partition

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



Overview

N − depth d ReLU net with nout = 1

x 7→ N (x) is continuous and piecewise linear function

Fixed weights/biases partition Rnin into convex pieces on
which N is linear

Goal. Understand average complexity of this partition

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



ReLU Net with nin = nout = 1 at Initialization
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Input Space Partition with nin = 2 at Initialization
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Evolution of Input Partition Through Network
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Complexity v1.0: Number of Regions

Deterministic Bounds: 1 ≤ #regions ≤ 2#neurons

Moral of Prior Work. There exist very special weight/bias
settings for deep skinny nets that saturate upper bound.

Q1. What is the average number of regions at init?

Q2. What happens to regions during training (practical vs.
theoretical expressivity)?
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Number of Regions when nin = nout = 1

Theorem (H-Rolnick)

Suppose weights and biases are independent with

Var[weights] = 2/fan-in, Var[bias] = σ2b > 0.

For any compact S ⊂ R there are c = c(σb), C = C (σb) so that

c # {neurons} ≤ 1

|S |
E
[

# {regions in S}
]
≤ C # {neurons}

Remark

1 Comes from formula that holds throughout training

2 Holds for any network connectivity

3 Holds for any 1D curve inside high dimensional input space
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Number of Regions on 1D Line Through Training
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Number of Regions on 1D Line Through Training
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Maximal # Regions on 2D Plane

Figure: Heuristic: # {regions on k dim slice} ∼ (#neurons)k . When
k = 2, should have ≈ (16 ∗ 3)2 = 2304 regions.
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Complexity v2.0: Volume of Linear Region Boundaries

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19



Complexity v2.0: Volume of Linear Region Boundaries

Basic Object of Study:

BN := {Linear region boundaries of N} .

nin = 1: vol(BN ) + 1 = #regions

nin > 1: # {regions inside S} 6= vol(BN ∩ S)

Motivation 1. vol(BN ) controls avg dist to boundary:

P (dist(x , BN ) ≤ ε) ' ε vol(BN ∩ S), x ∼ Unif(S).

Motivation 2.: vol(BN ) controls correlation length:

corr. length of N
?
≈ dist(x , BN )
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Volume of BN

Theorem (H-Rolnick)

Suppose weights and biases are independent with

Var[weights] = 2/fan-in, Var[bias] = σ2b > 0.

For compact S ⊂ Rnin there are c = c(σb), C = C (σb) so that

c # {neurons} ≤ 1

vol (S)
E
[

vol(BN ∩ S)

]
≤ C # {neurons}

Corollary

Let x ∈ S = [0, 1]nin be uniform. There exists c = c(σb) so that

E [dist(x ,BN )] ≥ c

# {neurons}
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Distance to BN vs. Number of Neurons
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Distance to BN vs. Number of Neurons
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Distance to BN vs. Test Accuracy
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Input Space Partition with nin = 2 at Initialization
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Input Space Partition with nin = 2 after 1 Epoch
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Input Space Partition with nin = 2 after Training
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Distribution of Distance to Linear Region Boundary
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Distribution of Distance to Linear Region Boundary
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Distribution of Distance to Linear Region Boundary
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Main Technical Theorem (for ReLU Nets)

Theorem (H-Rolnick)

Let N be a ReLU net with nout = 1 and random weights/biases,
so that bias bz at neuron z has density ρbz . Then, for S ⊂ Rnin ,

E [vol (BN ∩ S)]

=
∑

neurons z

∫
S

E
[
‖∇z(x)‖ ρbz (z(x)) 1{ ∂N

∂Z
(x)6=0}

]
dx ,

where z(x) is the pre-activation for neuron z and

Z (x) = max {bz , z(x)} = post-activation.

Remark

1 Analogous to Kac-Rice formula but easier because bz random

2 Holds throughout training as weights/biases can be correlated

3 Holds for any connectivity
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Interpretation and Intuition

For fixed x ∈ S , each term in

E
[
‖∇z(x)‖ ρbz (z(x)) 1{ ∂N

∂Z
(x)6=0}

]
dx

has interpretation:

‖∇z(x)‖ dx − size of dx under x 7→ z(x)

ρbz (z(x)) ‖∇z(x)‖ dx − P(bz creates kink at [x ± dx ])

1{ ∂N
∂Z (x)6=0} − event that kink at x survives to output

Intuition. If ‖∇z(x)‖ = O(1) and bz is not too concentrated,
then z(x) = bz can only be solved in O(1) regions.
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∂Z
(x)6=0}

]
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‖∇z(x)‖ dx − size of dx under x 7→ z(x)

ρbz (z(x)) ‖∇z(x)‖ dx − P(bz creates kink at [x ± dx ])

1{ ∂N
∂Z (x) 6=0} − event that kink at x survives to output
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