Complexity of Linear Regions in Deep Nets

Boris Hanin

Facebook AI Research and Texas A&M

March 5, 2019

Joint with David Rolnick

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

A 3 b

э

• Brain: Why deep nets, Pinky?

• Brain: Why deep nets, Pinky?

• Pinky: Expressivity, Brain!

• Brain: Why deep nets, Pinky?

• Pinky: Expressivity, Brain!

• Brain: What about learnability?

Numerical Instability for Large Numbers of Regions

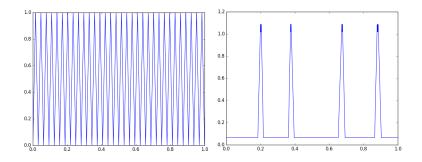
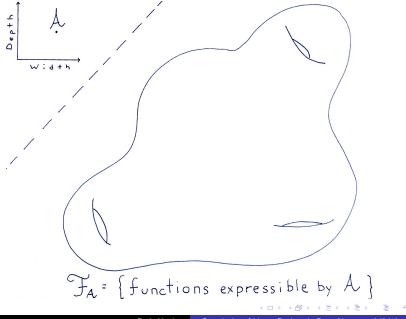
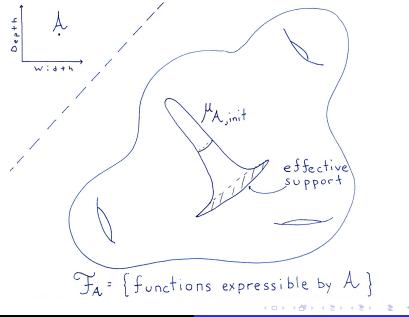


Figure: Random perturbation of example w/maximal number of regions.

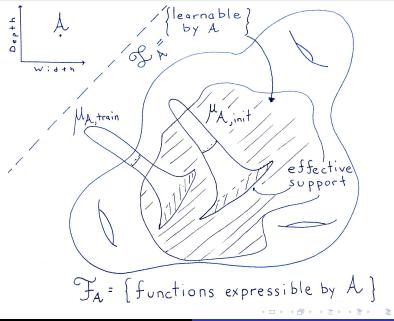
Theoretical Expressivity



Practical Expressivity at Init



Practical Expressivity



How To Do Theory?

Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

▲圖 ▶ ▲ 圖 ▶

æ

• **Goal.** Characterize typical complexity of functions drawn from $\mu_{A,\text{init}}, \mu_{A,\text{train}}$.

I ≡ ▶ < </p>

 • **Goal.** Characterize typical complexity of functions drawn from $\mu_{A,\text{init}}$, $\mu_{A,\text{train}}$.

• Intution. Probability measures in high dimensions are often concentrated around low dimensional sets.

• **Goal.** Characterize typical complexity of functions drawn from $\mu_{A,\text{init}}$, $\mu_{A,\text{train}}$.

• Intution. Probability measures in high dimensions are often concentrated around low dimensional sets.

 Idea. For networks with piecewise linear activations, complexity of μ_{A,init} and μ_{A,train} encoded in corresponding partition of input space.

Overview

<ロ> <同> <同> < 同> < 同>

æ

• \mathcal{N} - depth *d* ReLU net with $n_{out} = 1$

Overview

• $\mathcal{N}~-$ depth d ReLU net with $n_{out}~=~1$

• $x \mapsto \mathcal{N}(x)$ is continuous and piecewise linear function

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

• \mathcal{N} - depth *d* ReLU net with $n_{out} = 1$

• $x \mapsto \mathcal{N}(x)$ is continuous and piecewise linear function

• Fixed weights/biases partition $\mathbb{R}^{n_{in}}$ into convex pieces on which $\mathcal N$ is linear

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ → 目 → の Q ()

• $\mathcal{N}~-$ depth *d* ReLU net with $n_{out}~=~1$

• $x \mapsto \mathcal{N}(x)$ is continuous and piecewise linear function

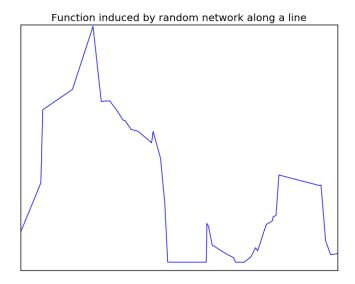
• Fixed weights/biases partition $\mathbb{R}^{n_{in}}$ into convex pieces on which $\mathcal N$ is linear

• Goal. Understand average complexity of this partition

伺 と く ヨ と く ヨ と …

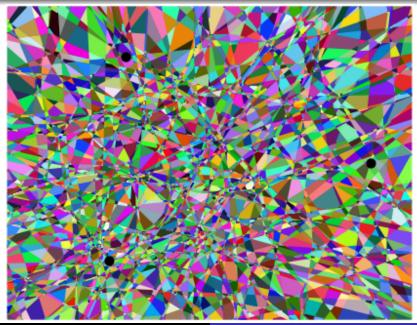
3

ReLU Net with $n_{in} = n_{out} = 1$ at Initialization

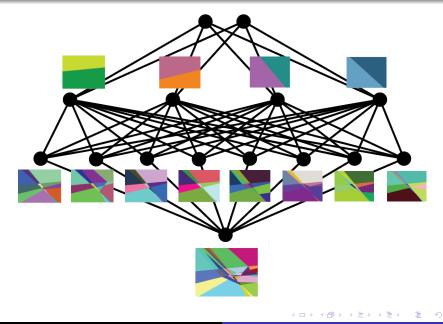


900

Input Space Partition with $n_{in} = 2$ at Initialization



Evolution of Input Partition Through Network



⊒ ▶

• Deterministic Bounds: 1 \leq #regions \leq 2^{#neurons}

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Deterministic Bounds: 1 \leq #regions \leq 2^{#neurons}

• Moral of Prior Work. There exist very special weight/bias settings for deep skinny nets that saturate upper bound.

• Deterministic Bounds: $1 \leq \#$ regions $\leq 2^{\#$ neurons}

• Moral of Prior Work. There exist very special weight/bias settings for deep skinny nets that saturate upper bound.

• Q1. What is the average number of regions at init?

• Deterministic Bounds: $1 \leq \#$ regions $\leq 2^{\#$ neurons}

• Moral of Prior Work. There exist very special weight/bias settings for deep skinny nets that saturate upper bound.

• Q1. What is the average number of regions at init?

• **Q2.** What happens to regions during training (practical vs. theoretical expressivity)?

Number of Regions when $n_{in} = n_{out} = 1$

伺 ト イヨト イヨト

3

Suppose weights and biases are independent with

 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

同 ト イヨ ト イヨ ト ヨ うくや

Suppose weights and biases are independent with

 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

For any compact $S \subset \mathbb{R}$ there are $c = c(\sigma_b), \ C = C(\sigma_b)$ so that

$$c \# \{\text{neurons}\} \le \frac{1}{|S|} \mathbb{E} \Big[\# \{\text{regions in } S\} \Big] \le C \# \{\text{neurons}\}$$

同 ト イヨ ト イヨ ト ・ ヨ ・ ク へ ()

Suppose weights and biases are independent with

 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

For any compact $S \subset \mathbb{R}$ there are $c = c(\sigma_b), \ C = C(\sigma_b)$ so that

$$c \# \{\text{neurons}\} \le \frac{1}{|S|} \mathbb{E} \Big[\# \{\text{regions in } S\} \Big] \le C \# \{\text{neurons}\}$$

Remark

Comes from formula that holds throughout training

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ■ ■

Suppose weights and biases are independent with

 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

For any compact $S \subset \mathbb{R}$ there are $c = c(\sigma_b), \ C = C(\sigma_b)$ so that

$$c \# \{\text{neurons}\} \le \frac{1}{|S|} \mathbb{E} \Big[\# \{\text{regions in } S\} \Big] \le C \# \{\text{neurons}\}$$

Remark

Comes from formula that holds throughout training

2 Holds for any network connectivity

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ■ ■

Suppose weights and biases are independent with

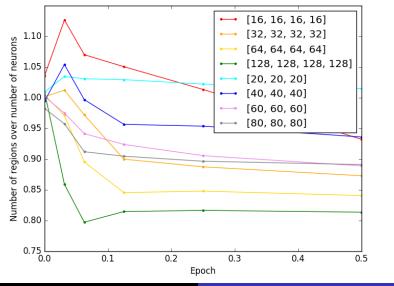
 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

For any compact $S \subset \mathbb{R}$ there are $c = c(\sigma_b), \ C = C(\sigma_b)$ so that

$$c \# \{\text{neurons}\} \le \frac{1}{|S|} \mathbb{E} \Big[\# \{\text{regions in } S\} \Big] \le C \# \{\text{neurons}\}$$

Remark

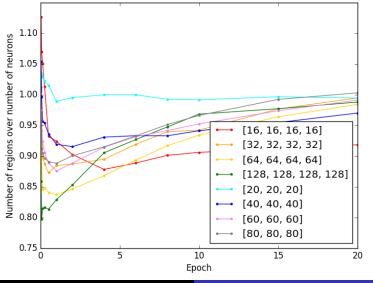
- Comes from formula that holds throughout training
- **2** Holds for any network connectivity
- **③** Holds for any 1D curve inside high dimensional input space



Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

0 _____

Number of Regions on 1D Line Through Training



Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

+)40

Maximal # Regions on 2D Plane

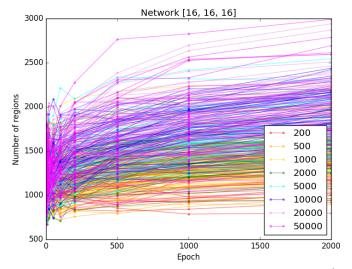


Figure: Heuristic: # {regions on k dim slice} ~ $(\text{#neurons})^k$. When k = 2, should have $\approx (16 * 3)^2 = 2304$ regions.

Maximal # Regions on 2D Plane

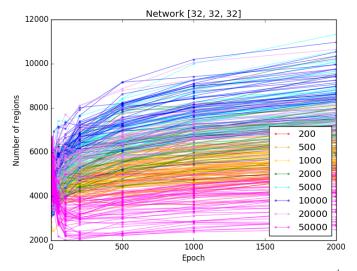


Figure: Heuristic: # {regions on k dim slice} ~ (#neurons)^k. When k = 2, should have $\approx (32 * 3)^2 = 9216$ regions.

Maximal # Regions on 2D Plane

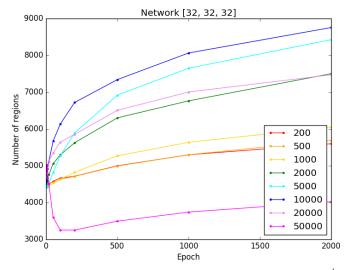
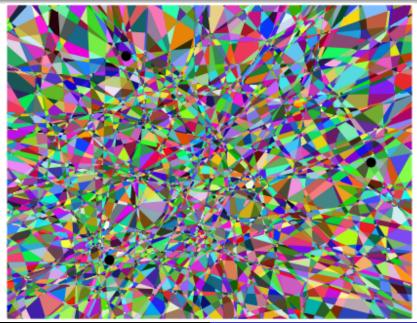


Figure: Heuristic: # {regions on k dim slice} ~ $(\text{#neurons})^k$. When k = 2, should have $\approx (32 * 3)^2 = 9216$ regions.



< ∃ →

• Basic Object of Study:

 $\mathcal{B}_{\mathcal{N}} := \{ \mathsf{Linear region boundaries of } \mathcal{N} \}$.

< ∃ >

3

• Basic Object of Study:

 $\mathcal{B}_{\mathcal{N}} := \{ \mathsf{Linear region boundaries of } \mathcal{N} \} \,.$

•
$$\underline{n_{in} = 1}$$
: $\operatorname{vol}(\mathcal{B}_{\mathcal{N}}) + 1 = \#$ regions

< ∃ >

3

• Basic Object of Study:

 $\mathcal{B}_{\mathcal{N}} := \left\{ \text{Linear region boundaries of } \mathcal{N} \right\}.$

•
$$\underline{n_{in} = 1}$$
: $\operatorname{vol}(\mathcal{B}_{\mathcal{N}}) + 1 = \#$ regions

• $\underline{n_{in} > 1}$: #{regions inside S} \neq vol($\mathcal{B}_{\mathcal{N}} \cap S$)

同 ト イヨ ト イヨ ト ヨ うくや

• Basic Object of Study:

 $\mathcal{B}_{\mathcal{N}} := \left\{ \text{Linear region boundaries of } \mathcal{N} \right\}.$

- $\underline{n_{in} = 1}$: $\operatorname{vol}(\mathcal{B}_{\mathcal{N}}) + 1 = \#$ regions
- $\underline{n_{in} > 1}$: #{regions inside S} \neq vol($\mathcal{B}_{\mathcal{N}} \cap S$)
- Motivation 1. vol(B_N) controls avg dist to boundary:

 $\mathbb{P}\left(\mathrm{dist}(x,\,\mathcal{B}_{\mathcal{N}}) \leq \epsilon\right) \quad \simeq \quad \epsilon \, \operatorname{vol}(\mathcal{B}_{\mathcal{N}} \cap S), \qquad x \sim \mathrm{Unif}(S).$

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● 目 ● ● ● ●

• Basic Object of Study:

 $\mathcal{B}_{\mathcal{N}} := \left\{ \text{Linear region boundaries of } \mathcal{N} \right\}.$

- $\underline{n_{in} = 1}$: $\operatorname{vol}(\mathcal{B}_{\mathcal{N}}) + 1 = \#$ regions
- $\underline{n_{in} > 1}$: #{regions inside S} \neq vol($\mathcal{B}_{\mathcal{N}} \cap S$)
- Motivation 1. vol($\mathcal{B}_{\mathcal{N}}$) controls avg dist to boundary:

 $\mathbb{P}\left(\mathrm{dist}(x,\,\mathcal{B}_{\mathcal{N}}) \leq \epsilon\right) \quad \simeq \quad \epsilon \, \operatorname{vol}(\mathcal{B}_{\mathcal{N}} \cap S), \qquad x \sim \mathrm{Unif}(S).$

• Motivation 2.: $vol(\mathcal{B}_{\mathcal{N}})$ controls correlation length:

corr. length of
$$\mathcal{N} \stackrel{?}{\approx} \operatorname{dist}(x, \mathcal{B}_{\mathcal{N}})$$

Volume of $\mathcal{B}_{\mathcal{N}}$

・ロト ・日下・ ・日下

æ

Theorem (H-Rolnick)

Suppose weights and biases are independent with

 $Var[weights] = 2/fan-in, Var[bias] = \sigma_b^2 > 0.$

Theorem (H-Rolnick)

Suppose weights and biases are independent with

 $\begin{aligned} & \text{Var}[\text{weights}] \ = \ 2/\text{fan-in}, \qquad \text{Var}[\text{bias}] \ = \ \sigma_b^2 > 0. \end{aligned}$ $\begin{aligned} & \text{For compact } S \subset \mathbb{R}^{n_{in}} \text{ there are } c = c(\sigma_b), \ C = C(\sigma_b) \text{ so that} \end{aligned}$ $c \,\# \{\text{neurons}\} \ \le \ \frac{1}{\text{vol}(S)} \,\mathbb{E} \bigg[\text{vol}(\mathcal{B}_{\mathcal{N}} \ \cap \ S) \bigg] \ \le \ C \,\# \{\text{neurons}\} \end{aligned}$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

Theorem (H-Rolnick)

Suppose weights and biases are independent with

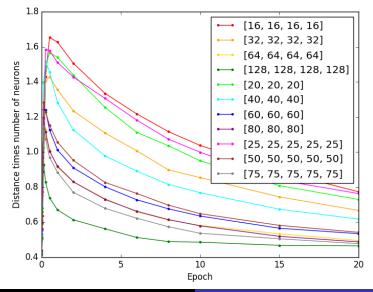
 $\begin{aligned} & \text{Var}[\text{weights}] \ = \ 2/\text{fan-in}, \qquad \text{Var}[\text{bias}] \ = \ \sigma_b^2 > 0. \end{aligned}$ $\begin{aligned} & \text{For compact } S \subset \mathbb{R}^{n_{in}} \text{ there are } c = c(\sigma_b), \ C = C(\sigma_b) \text{ so that} \end{aligned}$ $c \ \# \{\text{neurons}\} \ \le \ \frac{1}{\text{vol}(S)} \ \mathbb{E} \bigg[\text{vol}(\ \mathcal{B}_{\mathcal{N}} \ \cap \ S) \bigg] \ \le \ C \ \# \{\text{neurons}\} \end{aligned}$

Corollary

Let $x \in S = [0, 1]^{n_{in}}$ be uniform. There exists $c = c(\sigma_b)$ so that $\mathbb{E} \left[\text{dist}(x, \mathcal{B}_{\mathcal{N}}) \right] \geq \frac{c}{\# \{\text{neurons}\}}$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

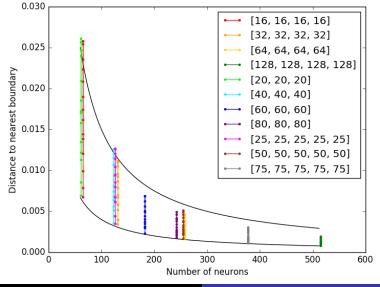
Distance to $\mathcal{B}_{\mathcal{N}}$ vs. Number of Neurons



Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

+)40

Distance to $\mathcal{B}_{\mathcal{N}}$ vs. Number of Neurons

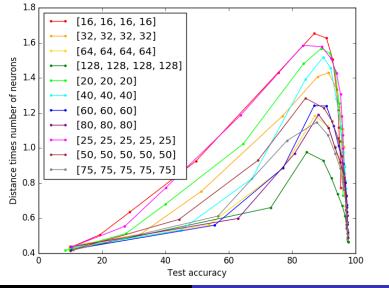


Boris Hanin Complexity of Linear Regions in Deep Nets -

*) 4 (

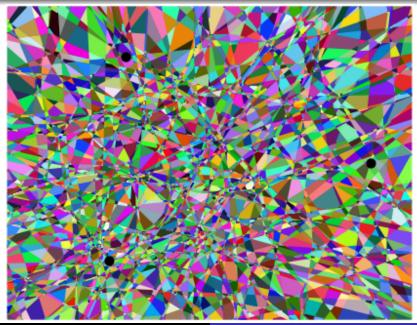
3/5/19

Distance to $\mathcal{B}_{\mathcal{N}}$ vs. Test Accuracy

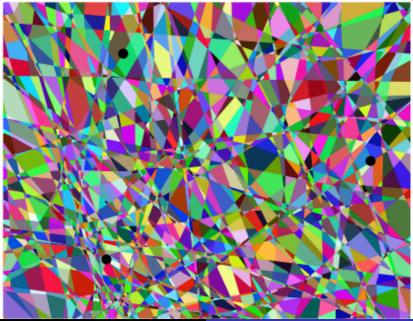


Boris Hanin Complexity of Linear Regions in Deep Nets - 3/5/19

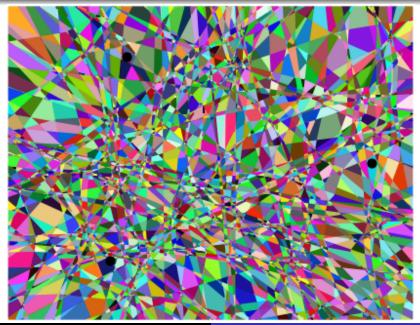
Input Space Partition with $n_{in} = 2$ at Initialization



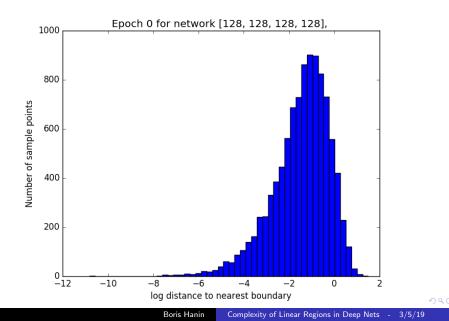
Input Space Partition with $n_{in} = 2$ after 1 Epoch



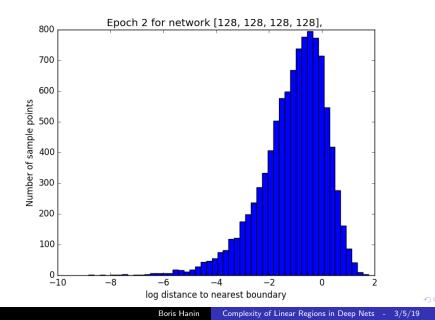
Input Space Partition with $n_{in} = 2$ after Training



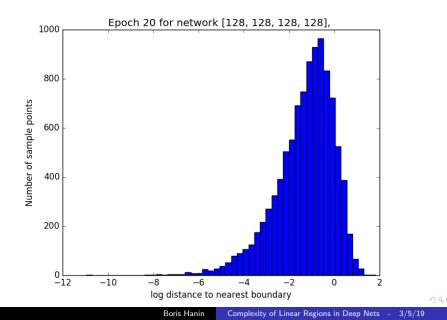
Distribution of Distance to Linear Region Boundary



Distribution of Distance to Linear Region Boundary



Distribution of Distance to Linear Region Boundary



< ∃ >

- ∢ ⊒ →

æ

Theorem (H-Rolnick)

Let N be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} .

Theorem (H-Rolnick)

Let \mathcal{N} be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} . Then, for $S \subset \mathbb{R}^{n_{in}}$,

$$\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}}\cap S\right)\right] = \sum_{\text{neurons } z} \int_{S} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}} \right] dx,$$

Theorem (H-Rolnick)

Let \mathcal{N} be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} . Then, for $S \subset \mathbb{R}^{n_{in}}$,

$$\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}}\cap S\right)\right] = \sum_{\operatorname{neurons} z} \int_{S} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial z}(x)\neq 0\right\}}\right] dx,$$
where $z(x)$ is the pre-activation for neuron z and

 $Z(x) = \max \{b_z, z(x)\} = \text{post-activation.}$

Theorem (H-Rolnick)

Let \mathcal{N} be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} . Then, for $S \subset \mathbb{R}^{n_{in}}$,

$$\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}}\cap S\right)\right] \\ = \sum_{\operatorname{neurons} z} \int_{S} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial z}(x)\neq 0\right\}} \right] dx,$$

where z(x) is the pre-activation for neuron z and

$$Z(x) = \max \{b_z, z(x)\} = \text{post-activation}.$$

Remark

Analogous to Kac-Rice formula but easier because b_z random

Theorem (H-Rolnick)

Let \mathcal{N} be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} . Then, for $S \subset \mathbb{R}^{n_{in}}$,

$$\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}}\cap S\right)\right] = \sum_{\operatorname{neurons} z} \int_{S} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial z}(x)\neq 0\right\}} \right] dx,$$

where z(x) is the pre-activation for neuron z and

$$Z(x) = \max \{b_z, z(x)\} = \text{post-activation}.$$

Remark

Analogous to Kac-Rice formula but easier because b_z random
 Holds throughout training as weights/biases can be correlated

Theorem (H-Rolnick)

Let \mathcal{N} be a ReLU net with $n_{out} = 1$ and random weights/biases, so that bias b_z at neuron z has density ρ_{b_z} . Then, for $S \subset \mathbb{R}^{n_{in}}$,

$$\mathbb{E}\left[\operatorname{vol}\left(\mathcal{B}_{\mathcal{N}}\cap S\right)\right] \\ = \sum_{\operatorname{neurons} z} \int_{S} \mathbb{E}\left[\|\nabla z(x)\| \rho_{b_{z}}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial z}(x)\neq 0\right\}} \right] dx,$$

where z(x) is the pre-activation for neuron z and

$$Z(x) = \max \{b_z, z(x)\} = \text{post-activation}.$$

Remark

Analogous to Kac-Rice formula but easier because b_z random
Holds throughout training as weights/biases can be correlated
Holds for any connectivity

• For fixed $x \in S$, each term in

$$\mathbb{E}\bigg[\|\nabla z(x)\| \rho_{b_z}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x) \neq 0\right\}} \bigg] dx$$

has interpretation

.⊒ . ►

• For fixed $x \in S$, each term in

$$\mathbb{E}\bigg[\|\nabla z(x)\| \rho_{b_z}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}} \bigg] dx$$

has interpretation:

•
$$\|\nabla z(x)\| dx$$
 - size of dx under $x \mapsto z(x)$

-

• For fixed $x \in S$, each term in

$$\mathbb{E}\bigg[\|\nabla z(x)\| \rho_{b_z}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}}\bigg]dx$$

has interpretation:

•
$$\|\nabla z(x)\| dx$$
 – size of dx under $x \mapsto z(x)$

• $\rho_{b_z}(z(x)) \| \nabla z(x) \| dx - \mathbb{P}(b_z \text{ creates kink at } [x \pm dx])$

→ □ → → □ →

3

• For fixed $x \in S$, each term in

$$\mathbb{E}\bigg[\|\nabla z(x)\| \rho_{b_z}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}} \bigg] dx$$

has interpretation:

•
$$\|\nabla z(x)\| dx$$
 - size of dx under $x \mapsto z(x)$

- $\rho_{b_z}(z(x)) \|\nabla z(x)\| dx \mathbb{P}(b_z \text{ creates kink at } [x \pm dx])$
- $\mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}}$ event that kink at x survives to output

• For fixed $x \in S$, each term in

$$\mathbb{E}\bigg[\|\nabla z(x)\| \rho_{b_z}(z(x)) \mathbf{1}_{\left\{\frac{\partial \mathcal{N}}{\partial Z}(x)\neq 0\right\}} \bigg] dx$$

has interpretation:

•
$$\|\nabla z(x)\| dx$$
 - size of dx under $x \mapsto z(x)$

- $\rho_{b_z}(z(x)) \|\nabla z(x)\| dx \mathbb{P}(b_z \text{ creates kink at } [x \pm dx])$
- $\mathbf{1}_{\left\{ \frac{\partial \mathcal{N}}{\partial \mathcal{I}}(x) \neq 0 \right\}}$ event that kink at x survives to output
- Intuition. If ||∇z(x)|| = O(1) and b_z is not too concentrated, then z(x) = b_z can only be solved in O(1) regions.