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Why study wide neural networks?

● Understand effects of overparameterization

● Theoretically simplifying limits (thermodynamic?)
○ Signal propagation 
○ Gaussian process correspondence
○ Gradient descent dynamics

● Think in function space (f) since parameters (w) in a neural network lack direct meaning
○ Random initialization p(w) induces prior over functions p(f)
○ Wide networks makes function space view more tractable

● Often wide networks perform better



Is the large width limit uninteresting?

In practice, find that larger width networks trained with stochastic optimization can generalize better.

Generalization gap for five-hidden 
layer fully-connected networks with 
variable widths on CIFAR-10. 
Filtered for 100% classification 
training accuracy. 



Deep neural networks 
as Gaussian processes



● https://arxiv.org/abs/1711.00165 

● Open source code : https://github.com/brain-research/nngp

*Slide credit: Yasaman Bahri

https://arxiv.org/abs/1711.00165
https://github.com/brain-research/nngp


Our contributions:

● Correspondence between Gaussian processes and priors for infinitely wide, deep neural networks.

● We implement the GP (will refer to as NNGP) and use it to do Bayesian inference. We compare its 
performance to wide neural networks trained with stochastic optimization on MNIST & CIFAR-10.

Motivations:

● To understand neural networks, can we connect them to objects we better understand? 

● An algorithmic aspect: perform Bayesian inference with neural networks?



Bayesian treatment of neural networks

● Usual gradient based training of NN : maximum likelihood (or maximum posterior) 
estimate

● Bayesian deep learning : marginalize over parameter distribution
○ Uncertainty estimates
○ Principled model selection
○ Avoid overfitting (model averaging)

● Why don’t we use it then?

○ High computational cost (estimating posterior weight dist)
○ Rely on approximate methods (variational / MCMC)



Bayesian treatment of deep neural networks by GPs

● Our suggestion

○ Exact GP equivalence to infinitely wide, deep networks
○ Works for any depth
○ Bayesian inference of NN, without training!

● Benefits
○ Uncertainty estimates
○ Principled model selection
○ Avoid overfitting (model averaging)

● Problem
○ High computational cost (estimating posterior weight dist.)
○ Rely on approximate methods (variational / MCMC)



Reminder: Gaussian Processes

Recall the definition of a Gaussian process:

For instance, for the RBF kernel, 

Samples from GP with RBF Kernel



Bayesian inference using a GP prior 

Prior with RBF Kernel Posterior with RBF Kernel



GP: Bayesian inference 

● Bayesian inference involves high-dimensional integration in general. 

● For regression, can perform inference exactly because all the integrals are Gaussian 

Result (Williams 97) is:

Reduces inference to doing linear algebra.



Shallow Neural Networks and Gaussian Process Priors
Radford Neal, “Priors for Infinite Networks,” 1994.

Neal observed that given a neural network (NN) which:

● has a single hidden layer
● is fully-connected
● has i.i.d. prior over parameters (such that it give a sensible limit)

Then the distribution on its output converges to a Gaussian Process (GP) in the limit of infinite layer 
width.



Shallow Neural Networks and Gaussian Process Priors 

Justification: Central Limit Theorem

In the infinite width limit, every finite collection of                            will have a joint multivariate Normal 
distribution: definition of GP.

Let’s suppose e.g.:

(Note that outputs are independent because they have Normal joint and zero covariance.)



Deep Neural Networks and Gaussian Process Priors
What is the prior over functions implied by the prior over parameters, for deep neural networks?

Consider a network which:
● is deep (L layers)
● is fully-connected
● has i.i.d. prior over parameters (such that it give a sensible limit)

Then the distribution on its output is also a GP in the limit of infinite layer width.

Suppose (from induction), that  , and different units j are independent. 
                          
Then similarly, from Central Limit Theorem: 



NNGP covariance function

Recursion relation is:

For some non-linearities, can compute F𝜙 exactly
(e.g. see Cho and Saul, ‘09; A. Daniely, et al. ‘16).

For ReLU:

ReLU kernel for various depths 
(larger depth gives flatter curves).



Deep Neural Networks and Gaussian Process Priors

Altogether, for a depth L network, we summarize this:

Samples from a GP neural network prior with depth 10.



Reference for more formal treatment

● A. Matthews et al., ICLR 2018
○ Gaussian Process Behaviour in Wide Deep Neural Networks
○ https://arxiv.org/abs/1804.11271

● R. Novak et al., ICLR 2019
○ Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
○ https://arxiv.org/abs/1810.05148
○ Appendix E

https://arxiv.org/abs/1804.11271
https://arxiv.org/abs/1810.05148


Experiments



Experimental setup
● Datasets: MNIST, CIFAR-10

● Permutation invariant, fully-connected model, ReLU/Tanh activation function

● Trained on mean squared loss

● Targets are one-hot encoded, zero-mean and treated as regression target 

○ incorrect class -0.1, correct class 0.9

● Hyperparameter optimized using random / grid search

○ Weight / bias variances, optimization hyperparameters (for NN)

● NN: `SGD’ trained opposed to Bayesian training. In practice, Adam optimizer 

was used (qualitatively similar).

● NNGP: standard exact Gaussian process regression, 10 independent outputs



Performance of wide networks approaches NNGP

Accuracy of finite-width, fully-connected deep NN + SGD → 
NNGP with exact Bayesian inference

Te
st

 a
cc

ur
ac

y



Finite width networks trained with SGD vs NNGP



NNGP hyperparameter dependence Test accuracy



Uncertainty

● Neural networks are good at making predictions, but does not naturally provide 
uncertainty estimates

● Bayesian methods incorporates uncertainty

● In domains where uncertainty of prediction is important, GP has been useful

● In NNGP, uncertainty of NN’s prediction is captured by variance in output



Uncertainty: how good are the estimates?

Empirical error is well correlated with uncertainty predictions

X: predicted uncertainty

Y: realized MSE

* averaged over 100 
points binned by 
predicted uncertainty



Log marginal likelihood (model selection)

● Neural network hyperparameters: depth, weight / bias variance, non-linearity

● No validation set is required to select model hyperparameters. Evaluate on train data. 

● KDD is deterministic and differentiable, implemented in Tensorflow. Can backprop!



Future works

NNGP correspondence opens up interesting angles to further analyze 
deep neural networks.

● Practical usage of NNGP

● Extension to other network architectures 

○ Convolutional / Residual [Novak et al., ICLR 2019, Garriga-Alonso et al., ICLR 2019]

○ Batch normalization, self-attention, recurrent, … 

● Systematic finite width correction



Gradient descent dynamics 
of wide networks



NeurIPS Bayesian Deep 
Learning Workshop 2019

Available at arXiv soon



Source:  Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Recall : empirical observations

Accuracy of finite-width, fully-connected deep NN + SGD → 
NNGP with exact Bayesian inference

How similar is gradient descent based training to the Bayesian inference? 
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Our contributions:

● Wide neural networks’ training dynamics under gradient descent become surprisingly simple
○ Effectively replace NN by its first-order Taylor expansion around init parameters
○ Linear model captures the NN training dynamics

● Analytic dynamics for MSE loss, simple generalization to xent loss / momentum optimizer / 
practical networks (wide residual network)

● Analytic output distribution dynamics for MSE loss: not equal to NNGP posterior

Motivations:

● Bayesian inference VS gradient descent training

● Tractable learning dynamics of deep neural networks



Gradient descent dynamics (continuous time)

Neural Tangent 
Kernel (NTK)
[Jacot et al. 2018]



Linearized networks 

Dynamics fully determined by initialization objects: simple ODE



Tractable dynamics for wide networks

● Remarkably Jacot et al. 2018 showed that

● For MSE loss, we also show that

● Linearized networks training dynamics converges to that of original network as width 
increases



Predictive output distribution
● Sample-then-optimize posterior sampling (Matthews et al., 2017)

○ Randomly initialize networks
○ Optimize (via GD) using training data
○ Predictive output distribution over ensemble of different initialization

● For wide networks
○ Only optimize readout weights : interpolation between prior and posterior of NNGP
○ Optimize all the weights: As width increases, ensembles of random wide neural networks 

trained with (stochastic) gradient descent converges to a Gaussian process



Experiments



NN posterior vs GP posterior



Comparison of training dynamics 
linearized network vs original network

FC / MSE / GD WResNet* / xent / momentum

CIFAR binary classification with 128 samples



Thank you! Questions?



Source:  Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

NTK parameterization of NN

NTK [Jacot et al 2018]
Conventional

Computes the same functions / modifies dynamics / universal learning rates (absorb 1/n) 



Deep Neural Networks and Gaussian Process Priors

The calculation of the expectation is a 2D Gaussian integral: 

As a result:

Base case in the recursion:


