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Motivation

Neural networks have extremely large numbers
of parameters. On the surface, that makes them hard to
understand analytically.

But physics provides examples where systems simplify
in the limit of large numbers of constituents:
thermodynamics/stat mech.
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What can we do
with a stat mech analogy?

Computing averages/expectation values is “easy.” A stat mech
theory gives us fluctuations, mean-field EFT,
higher-point correlators, 1/N expansion, etc.

Ising model:
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Feed-forward network: setting notation
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What do we (usually) want from
a neural network?

 Network architecture can accommodate “infinite” data without
the network growing in size (we’re drawing from a distribution)
e | 2 weight/bias regularization is great, but what you really care about
Is the loss function on the data
* You want to train your network, not just use random weights
and biases
* Loss depends on input data: you actually want the network to
learn something

Point of this paper: if you give up on all these,
you can have your stat mech model. But what have we learned?



Choosing a random network

Goal of the paper is to study the statistics of an ensemble of
random networks. What measure should we choose?

“As the objective we hope to minimize is the total loss, with reference
to Jaynes [“Information theory and statistical mechanics”, Phys. Rev. 1957]
we select the maximum entropy distribution over
f subject to a measurement of the expected loss function.”

What’s the maximum entropy distribution holding the average loss (energy)
fixed? Why, lo and behold, it’s the Boltzmann distribution:
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(Does anybody know the Jaynes reference? This seems like words
draped around the conclusion they wanted from the beginning:
iIf you start with the canonical ensemble, you probably get a stat mech system)



Changing variables

The nontrivial result of the paper is that pre-activations
are a nicer choice of variables than weights and biases.
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Data loss only depends ..at the price of coupling
on the pre-activation all the pre-activations
of the final layer... together.

Things which are not addressed in this paper but may be worth investigating:

* What is the temperature? What else can we compute from Q?
e Can we do perturbation theory in Jp?
e Can we treat the input data as an external source field?



Quick overview of the proof

Remember Faddeev-Popov? Introduce pre-activations
as delta-function constraints,
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lterate to expand the activation function composition in the data loss:
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Quick overview of the proof

Remember Faddeev-Popov? Introduce pre-activations
as delta-function constraints, exponentiate them to put them in the action,
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where we have let [d)] = [dW]|db]|dz]|d\] for notational convenience.



Quick overview of the proof

Remember Faddeev-Popov? Introduce pre-activations
as delta-function constraints, exponentiate them to put them in the action,
complete the square to integrate out weights and biases
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At this stage, all weights and biases appear at most quadratically,
at the expense of adding pre-activations z and auxiliary fields A to the action.
Complete the square, integrate out W and b to get
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The rest of the paper
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Super-deep networks

In order to integrate out the auxiliary fields, the matrix Y. has to be full rank.
But it’s a sum of Ni+1 outer products, so its rank is at most Ni+1.
The size of the matrix is the size of the dataset,
so to get rid of auxiliaries, we need to assume

N +1> | M|

(this is deeply unrealistic, and not very robust. Is this assumption
even necessary? What’s wrong with auxiliary fields?)

Under this assumption, we have the main result of the paper,
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Now what?
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Poole, Lahiri, Raghu, Sohl-Dickstein, and Ganguli [2016]
have a mean-field description of this ensemble from replacing
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It works, but doesn’t get the fluctuations (as expected):

“To overcome these issues, we pursue a more
principled solution to Eqg. (9) by considering
a controlled expansion for large N,.”
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From 1 datum to O

Except that’s not what they do. First they simplify to the case of a single input:
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This is still too hard, so they get rid of the input and put the network
on a circle, which necessarily requires Jp = 0.
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In my opinion, this is a cute interacting field theory model,
but by this point has basically nothing to do with neural networks.



What'’s left: sanity checks

Try a linear activation function: action is now isotropic in z, so switch to spherical coords,
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point approximation: transform, find EFT of fluctuations
to quadratic order:
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What'’s left: sanity checks

Try a RelLLU activation function: break pre-activations into + and - components
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Can switch to spherical coords. with introduction of new field k which counts
positive/negative orthants.

Find minimum:
half of pre-activations are zero,
as may be expected

Expand around minimum, find EFT
of fluctuations to quadratic order:
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What have we learned?

(my heavily subjective conclusions, not the authors’)

* |f you decide from the outset you want a stat mech model for a neural
network, you can get one, as long as you’re veeeeery flexible
with your definition of “neural network.”

 That said, change of variables to pre-activations seems like a useful trick.
Do we need to be afraid of auxiliary fields? Probably not (c.f. Faddeev-Popov
ghosts, very useful for computing tree-level Feynman diagrams in Yang-Mills).

* | ots of obvious follow-ups: higher-point correlators, perturbation theory in
Jb, data as external sources in EFT, 1/N corrections, etc.

* More generally, is there any high-level connection between ensembles of
random networks and the behavior of a single network during training?
Can we think of training as a flow in the space of random networks? If so,
this might be a useful formalism to understand generalization.



