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Why Weak supervision?

Fully supervised learning on real data often difficult/impossible
• Individual labels are prohibitively expensive to assign
• Personalized information legally protected (e.g., medical,

demographic data)
• For quantum systems, unique labels may be unphysical

Several classes of learning tasks on partially labels well developed
• semi-supervised: augmenting labeled with unlabeled data

• multiple instance: presence of signal in bag is marked but not identified

One which nicely maps onto many scientific data measurements is
Learning from Label Proportions
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Plan

• Learning from Label Proportions

• Viability and generalization error

• Proportion uncertainties, stability, and error propagation
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Learning from Label Proportions
general setting

Domain of instance features denoted by X and (discrete) labels by
Y. Data consists of bags of events with features x̃ = (x1, . . .xr) and
labels ỹ = (y1, . . . , yr), drawn iid from a distribution over (X × Y)r.

Learner has no access to labels, but instead receives label
proportions (x̃, fi(ỹ)), with fi(ỹ) =

∑r
n=1 Iyn=i/r. From a set of m

bags, the task is to find a classifier from individual events to
labels.

For experimental measurements, fi(ỹ) can be naturally interpreted as, e.g., a
rate/cross-section measurement/calculation even if individual events cannot be

perfects separated by their features
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Is this even possible?
heuristic argument

Consider binary classification (yi = {0, 1}). Discretize data into
bins bm,j. If 2 bags are present, in each bin

bA,j = fA,1b1,j + (1− fA,1)b0,j

bB,j = fB,1b1,j + (1− fB,1)b0,j
=⇒

b0,j =
fA,1bB,j−fB,1bA,j

fA,1−fB,1

b1,j =
(1−fB,1)bA,j−(1−fA,1)bB,j

fA,1−fB,1

and the distributions can be inverted algebraically.

Requirements:
• Number of bags ≥ number of classes to be distinguished, with

label proportions unique for each bag.
• The bags need to be drawing from the same underlying

distribution for each class, i.e., however the label proportions
were made different should be uncorrelated from the
distribution over (X × Y)r.
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Classification in practice

Don’t want to discretize, no guarantee events sample feature space
densely enough it even makes sense. How to classify events?
Modify loss function!

1. direct attack:

`LLP = arg min
h∈H

`(〈h(xi)〉batch, 〈f (ỹ)〉batch)

typically need re-optimization of hyperparameters
2. clever trick (classification without labels):

`CWoLa = arg min
h∈H

`(h(xi), f (ỹ))

Metodiev et al. [arXiv:1708.02949]
with your fully-supervised loss function of choice
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Classification without labels

why does the second version work at all?

Theorem
Given mixed samples M1 and M2 defined in terms of pure samples S and B with signal fractions
f1 > f2, an optimal classifier trained to distinguish M1 from M2 is also optimal for
distinguishing S from B.

Proof.
The optimal classifier to distinguish examples drawn from pM1

and pM2
is the likelihood ratio

LM1/M2
(x) = pM1

(x)/pM2
(x). Similarly, the optimal classifier to distinguish examples drawn

from pS and pB is the likelihood ratio LS/B(x) = pS(x)/pB(x). Where pB has support, we can
relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1pS + (1 − f1)pB

f2pS + (1 − f2)pB
=

f1LS/B + (1 − f1)
f2LS/B + (1 − f2)

,

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
∂LS/B LM1/M2

= (f1 − f2)/(f2LS/B − f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed
classifier. Therefore, LS/B and LM1/M2

define the same classifier.

Only makes sense for binary classification!
Still need to know label proportions to calibrate classifier.
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When is all of this viable?

All of this should clearly work in at least some cases, but can we
know when will fails?

It turns out the classification without labels results are more
general than they seem. Under mild assumptions (more later) a
classifier which can accurately predict bag proportions can be
guaranteed to achieve low error on event labels.

More precisely, for φr(h) : X r → R, φr(h)(x̃) =
∑r

n=1 h(xi)/r, the
classifier selected by

arg min
h∈H

∑
bags

`(φr(h), f (ỹ))

will also solve the original task with high accuracy.
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Generalization errors for label proportions

For a given empirical bag label proportion error for loss function `,
err`(h), it is possible to prove a bound on the expected error over
the full distribution X × Y,

err`G(h) = E(x̃,ỹ)`(φr(h), f (ỹ)).

As a function of the VC dimension of the hypothesis class, with
probability 1− δ, err`G(h) ≤ err`(h) + ε if the number of bags m is

m ≥ 64

ε2

(
2VC(H) log 12r

ε
+ log 4

δ

)
.

The mild dependence on bag size r means that destabilizing the
method by adding more data is not a large concern.

for this proof and following, see arXiv:1402.5902
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Event errors from proportion errors

With some mild assumptions, the above founds can be extended to
individual events.

If err`G(h) ≤ ε with probability 1− δ, and each bag is at least
(1− η)-pure 1− ρ of the time, then h(x) correctly classifies a
fraction (1− τ)(1− δ − ρ)(1− 2η − ε) of N events with probability

1− e−Nτ2

2 (1−δ−ρ)(1−2η−ε).

Unfortunately, these bounds are somewhat weak. Guaranteed
high performance generically requires extremely pure samples.
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Class distribution independence

The preceding was so weak because no conditional independence
of the underlying distributions from the bags was assumed, i.e.,
the assumption that allowed us to invert the class distributions
earlier.

If all bags are drawn from mixtures of underlying class
distributions with different fractions, the probability of event error
can be written as a generative model.

For binary classification, the
probability of getting a classifier
with error ≤ ε is then bounded
from below by u(ε, r).

The general answer becomes quite
involved in this case, and I won’t attempt
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Label uncertainties

The supervised aspect comes from the provided label proportions.
What if these are wrong?

Return to the heuristic argument

bA,j = fA,1b1,j + (1− fA,1)b0,j

bB,j = fB,1b1,j + (1− fB,1)b0,j
=⇒

b0,j =
fA,1bB,j−fB,1bA,j

fA,1−fB,1

b1,j =
(1−fB,1)bA,j−(1−fA,1)bB,j

fA,1−fB,1

A Neyman–Pearson-optimal classifier is z = b0/(b0 + b1). The
dependence on the error from a shift/uncertainty in any label
proportion can be worked out analytically.
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Label insensitivity
cartoon version
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As long as the resulting distortion is monotonic, the classifiers are
equivalent
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Label insensitivity
concrete example

For a binary classifier and 2 bags with error fA,1 → fA,1 + δ,

z̄′ = 1− fB
1− 2fB

1−fA−δ
1−fB

− r(x)
1−2fA−2δ

1−2fB
− r(x)

= z̄i + δ

(
1−fB
1−2fB

− z̄i
1−2fB

+ 2(z̄2i − z̄i)

fA−fB
1−2fB

+ 2δ( 1−fB
1−2fB

− z̄i)

)
,

where r(x) = bA(x)/bB(x) is the ratio of inferred bag distributions.

The classifier remains equivalent to the optimal one if

δ .
fA − fB

3− 2min(fB, 1− fB)
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A numerical study
impact of mismodelling
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Using random mutli-gaussian mixture models
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Concluding thoughts

• Can bounds on generalization errors be made stronger
without assuming distribution independence? (Or assuming
something weaker)

• Understand how optimality arguments change with finite
statistics/correlations?

• Can we propagate input uncertainties through the network?
I Where would this be useful?

• Thank you!
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