Learning to denoise without clean data

Joshua Batson hep-ai seminar 10/18/18

Noisy data is clean data + noise

$$y = x + n$$

$$n \sim \mathcal{N}(0, \sigma^2)$$

Noisy data is clean data + noise

$y \sim Poisson(Nx)/N$

N = mean photons at peak intensity

$$y = x + n$$

We want to predict

$$y \mapsto x$$

Prior: nearby pixels are similar

Denoising strategy: local averaging

f(y) = G * y

Prior: nearby pixels are similar

Denoising strategy: local averaging

f(y) = G * y

Prior: nearby pixels are similar

Denoising strategy: local averaging

f(y) = G * y

Prior: nearby pixels are similar, edges exist

Denoising strategy: local medians

Prior: nearby patches may be similar, corners exist

Denoising strategy: NL-means

Prior: nearby patches may be similar, corners exist

Denoising strategy: NL-means

$$w(i,j) = rac{1}{Z(i)} e^{-rac{||v(\mathcal{N}_i)-v(\mathcal{N}_j)||^2_{2,a}}{h^2}},$$

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j),$$

Prior: nearby patches may be similar, corners exist

Denoising strategy: NL-means

$$w(i,j) = rac{1}{Z(i)} e^{-rac{||v(\mathcal{N}_i)-v(\mathcal{N}_j)||^2_{2,a}}{h^2}},$$

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j),$$

Aside: astronauts and models

Prior: x is sparse in some basis (wavelet, fourier)

Denoising strategy: shrinkage in that basis

Prior: x is in the output of a neural net, G

Denoising strategy:

 $\min_z L(G(z),y)$

Prior: neural nets learn structured before noise

Denoising strategy: Deep Image Prior.

$$\hat{\theta} = \min_{\theta} ||f_{\theta}(z) - y||^2$$

 $\hat{x} = f_{\hat{\theta}}(z)$

training_images step 32 deep-image-prior-gaussian_poisson-10.0-0.2 Mon Sep 17 2018 19:07:47 Pacific Daylight Time

Autoencoders

Prior: signal is the "low-complexity" part

(Variational) Autoencoder

(Variational) Autoencoder

Denoising Autoencoder

Denoising Autoencoder

UNet

Reconstruction from downsampling (CARE)

Reconstruction from downsampling (CARE)

noise2noise

Independent noise in two measurements of each sample.

Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen¹² Jacob Munkberg¹ Jon Hasselgren¹ Samuli Laine¹ Tero Karras¹ Miika Aittala³ Timo Aila¹

$$y = x + n$$
$$y = x + n'$$

 $\min_{\theta} \sum_{i} L(f_{\theta}(y), y')$

Example training pairs

