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Components of training an image classifier

For fixed architecture of ResNet 56 we have:

1. Preprocessing: normalize, shift and flip (show examples)
2. Momentum
3. Weight decay (aka L? regularization)

4. Learning rate scheduling



Components of training an image classifier

Dataset: CIFAR10 raw




Components of training an image classifier

Dataset: CIFAR10 processed (normalize, shift and flip)




Components of training an image classifier

With all the ingredients (mom, wd, prep) we get 93.1% accuracy on C10!

e Remove momentum only: -1.5%

e Remove weight decay only: -3.2%

Remove preprocessing only: -6.3%

Remove all three: -12.5%

What components are essentially necessary?



Expressivity and overfitting

e Regression vs. classification is there a fundamental reason that

makes one harder?

e Is it always possible to memorize the training set? (9 examples in
CIFAR100)

e What's happening to the loss when the accuracy is stable?



State of Image Recognition

- http://clarifai.com/

LANGUAGE

English (en)

PREDICTED CONCEPT

cow

agriculture

milk

beef cattle

livestock

cattle

PROBABILITY

1

.000
.997
.996
.995
.993

.993

TRY YOUR OWN IMAGE OR VIDEO



State of Image Recognition - http://clarifai.com/

LANGUAGE

English (en)

PREDICTED CONCEPT

beach

water

seashore

travel

no person

sea

PROBABILITY

2]

0

992

.984

.975

.974

.973

973

TRY YOUR OWN IMAGE OR VIDEO



State of Image Recognition - http://clarifai.com/

LANGUAGE

English (en)

PREDICTED CONCEPT
no person
summer
outdoors
farm

mammal

landscape

PROBABILITY

0

0

0

0

0

0

980

951

939

922

920

897

H TRY YOUR OWN IMAGE OR VIDEO



State of Image Recognition - http://clarifai.com/

Is all we do still just a fancy curve fitting?



Geometry of the training surface



The Loss Function

—

. Take a dataset and split it into two parts: Diain & Drest

N

. Form the loss using only Dy,in:

Etrain(W) = ; Z ﬁ(ya f(W'X))

Dt [
‘ fall'l‘ (X7Y)€Dtrafn

w

. Find: w* = argmin Lyin(w)

>

...and hope that it will work on Diest.

10



The Loss Function

Some quantites:

e M : number of parameters w € RM

e N : number of neurons in the first layer

e P : number of examples in the training set |Dyyain|
e d : number of dimension in the input x € R

e k : number of classes in the dataset

Question: When do we call a model over-parametrized?

Question: How to minimize the high-dimensional, non-convex loss?
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GD is bad use SGD

“Stochastic gradient learning in neural networks”, Léon Bottou, 1991

e The total gradient (3) converges to a local minimum of the cost function. The algorithm
then cannot escape this local minimum, which is sometimes a poor solution of the
problem.

In practical situations, the gradient algorithm may get stuck in an area where the cost
is extremely ill conditionned, like a deep ravine of the cost function. This situation
actually is a local minimum in a subspace defined by the largest eigenvalues of the
Hessian matrix of the cost.

The stochastic gradient algorithm (4) usually is able to escape from such bothersome
situations, thanks to its random behavior (Bourrely, 1989).
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GD is bad use SGD

Bourelly (1988)

It has been shown that the difficulty in parallel learning is duc to the fact that he paralle]
algorithm does not really use the stochastic algorithm. Tr solunons gl Proposed 1

prevent the system from falling into a local minimum.

1) Add momentum to the algorithm such that it can "roll past” a local minimum, Thus the

algorithm then becomes:
Wi = (1-0) Wi - € o f(W, X))

where f is the error gradient Q relative to W

2) One can add a random "noise” to the gradient calculations. One method of performing this
task is to calculate the gradients in an approximate manner. This variation could be
modelled as a type of 'Brownian motion', using a temperature function (similar to simulated
annealing). This temperature could be lowered relative to the remaining system error. For
example, the variation in gradients could follow a Gaussian distribution. Thus, for

example:
Wey = W,-eN(£(W, X)), kiTemp)
where f is the error gradient Q relative to W

and N is a function giving a Gaussian random variable.

Both of these approaches are presently under research.
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GD is bad use SGD

Simple fully-connected network on MNIST: M ~ 450K (right)

10! Cost vs. step no for 500-300 network
: : — SGD train
— SGD test
— GD train
100 — GDtest ||

L ! L 1
0 10000 20000 30000 40000 50000

Average number of mistakes: SGD 174, GD 194
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GD is bad use SGD

. I

in the hidden Iayer.
ly 5 neurons in

The network has on

Evaluation of computationg] time and Jo
BV

arning time
dwritten numbers recognition t
e han

the

by training the network for
ask. The network jg designed g follo

id), 5 hidden units and 10 output units, must perform classif;
20x20 grid), - ate the correct Output unit (0 19 9, 1, a
rtions such as vertical and horizonta] translations, scaling,
distortions

d on ma
Numbers are code

is achieveq

WS : 400 Input units (3
cation task: for €ach input

the network must actiy ddition, it myg, overcome

aber, A

num Totation and random w|

hite noise
al grey-levels Taki- «

trices of 20x20 re

-~ ol o
ith racnant «
~lecan v

15



GD vs SGD in the mean field approach

Take ((y, f(w; x)) = (y — f(w; x))? where f(w;x) = % >i_; o(w;, x)

Expand the square and take expectation over data:

, N
L(w) = Const + N; Z U(wi, w))

Population risk in the large N limit:
L(p) = Const + 2/ V(w)p(dw) + / U(wa, wa)p(dwy)p(dws)

Proposition: Minimizing the two functions are the same
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GD vs SGD in the mean field approach

Write the gradient update per example and rearrange:

1
Bw; = 20V 0 (Wi, x)(y = % D o(wi, )
=il

N
1
=20V yo(w;, x) — 2nVy,o(w;, x Za w;, X
i=1
Taking expectation over (past) data gives the update (ith neuron):

E(Aw|past)/2n = =V, V(w;) va, wi, w;)

- Then pass to the large N limit (with proper timestep scaling)

- And write the continuity equation for the density.
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GD vs SGD in the mean field approach

References:

1. Mei, Montanari, Nguyen 2018 (above approach)
2. Sirignano, Spiliopoulos 2018 (harder to read)

3. Rotskoff, Vanden-Eijnden 2018 (additional diffusive and noise terms,
as well as a CLT)

4. Wang, Mattingly, Lu 2017 (same approach different problems)

Is it really the case that in the large N limit, GD and SGD are the same?
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Quick look into Rotskoff and Vanden-Eijnden

Here 6 is learning rate / batch size

Dean’s equation for correlated noise terms

Ospn =V - <70VFpn + / c'VK(y, y/)p’npndy/dc/>
JDXR

+ 0. (—Fpn + / K (y,y’)p;pndy’dc’)
DxR
+30VV : (pn® Aa([fa(t) = [1,9:9)) + 3002 (0n Ao ([fn() = f1, 9, )
+09.V - (pucAi([fn(t) = f1.4,9))
+ \/éi],,,(t,y,c)
Same first order term as gradient descent

P =n? — Guarantee of convergence
Recover the error scaling
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SGD is really special

Where common wisdom may be true (Keskar et. al. 2016.):

Accuracy

Accuracy

dopt - - SB-Training - - SB-Training
30 — SB-Testing 401 — SB-Testing
20l - - LB - Training 30 - - LB - Training
[ — LB -Testing i — LB - Testing
10l T T H 20 T T i
20 40 60 80 100 20 40 60 80 100
Epoch Epoch
(a) F» ® Gy

Figure 2: Convergence trajectories of training and testing accuracy for SB and LB methods

F2: fully connected, TIMIT (M = 1.2M)
C1: conv-net, CIFAR10 (M = 1.7M)

e Similar training error, but gap in the test error.
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SGD is really special

Moreover, Keskar et. al. (2016) observe that:

e LB — sharp minima
e SB — wide minima

Considerations around the idea of sharp/wide minima:

fins(R) =/ '{/5\[1;7 R)fH(R)]dR'} (2)
where R is a multidimensional vector representing all the coordinates in the molecule.
One of the simplest and most useful forms for Sy is a Gaussian
Sy(R) = C(A)eMTR
C(A) = =2Det7'(A) (3)

where d is the total dimensionality of #. The function [ included in (2) allows for non-
linear averaging. Two choices motivated by physical considerations are f(z) = z and f(z) =
¢=#/E5T | Phese choices correspond respectively to the “diffusion equation” and “cffective
energy” methods which are described below. Wu [77] has presented a general discussion of
transformations of the form of (2).

A highly smoothed I‘I\J (from which all high spatial-frequency components have been
removed) will in most cases have fewer local minima than the unsmoothed (“bare”) func
{ion, so it will be much easier to identify its global minimum. If the strong spatial-scaling
hypothesis is correct, the position of this minimum can then be iteratively tracked by local-
minimi

tion as A decreases. As A — 0, the position will approach the global minimizer of
the bare objective function.

Pardalos et. al. 1993 (More recently: Zecchina et. al., Bengio et. al., ...) ,
1



LB SB and outlier eigenvalues of the Hessian

MNIST on a simple fully-connected network. Increasing the batch-size
leads to larger outlier eigenvalues.

lel Right eigenvalue distribution
—— Heuristic threshold X
2.0091" . small batch X
1754 X Large batch
1.50 |
1%
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> N
$ 1.00 X
Ryl
w
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X
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X
| X
0.25 ><><><><
0.00 vvvy*yyyy*ﬁ@@@@gxxi{ X ; .

40 35 30 25 20 15 10 5
Order of largest eigenvalues
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Geometry of redundant over-parametrization

Figure: w® (left) vs. (wiws)? (right)
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Searching for

arp basi

Repeating the LB/SB with a twist

1. Train a large batch CIFAR10 on a bare AlexNet
2. At the end point switch to small batch

Continuous training in two phases

1.0
Train acc %@— W
2.0 Testacc ™ 7% 3
f * - 0.8
154 &
5 - 0.6 >
© ©
> 5
3 1.0 g
S I 0.4 <
0.5 1 |
Dy W F0.2
Train loss "I ”l,"“,‘ o
0.0 Test loss it R
T T T T 0.0
0 10000 20000 30000 40000 50000

Number of steps (measurements every 100)
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Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

Line interpolation between end points of the two phases

X XX F1.0
X : X Train accuracy
61 x 3 X Test accuracy
: 0.8
g X X X
X |
E 3 0.6 >
© H ©
> ! 5
%] H %
o i O
3 3 F0.4 <
¢— Train loss | 0.2
11 Test loss :
01 ~—ed
T T u T T T — 0.0
-1.0 -0.5 0.0 0.5 1.0 15 2.0

Interpolation coefficient 25



Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution
2. Extend a line away from the SB solution

Line interpolation between end points of the two phases

X X X X X X X X X X X} 1.0
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Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution
2. Extend a line away from the SB solution
3. Extend a line away between the two solutions

Line interpolation between end points of the two phases

X X X X X X X X X X X X X X X X X[ 10
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Connecting arb y solutions

1. Freeman and Bruna 2017: barriers of order 1/M
2. Draxler et. al. 2018: no barriers between solutions
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String method video: https://cims.nyu.edu/~eve2/string.htm -


https://cims.nyu.edu/~eve2/string.htm

What about GD + noise vs SGD

A walk with SGD, Xing et. al. 2018

14 —— Gradient Descent (GD) without Noise
3 2 —— GD with isotropic noise variance 0.014
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String method video: https://cims.nyu.edu/~eve2/string.htm
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https://cims.nyu.edu/~eve2/string.htm

Back to the beginning

Does this mean any solution, obtained by any method is in the same
basin?

1. Different algorithms
2. Pre-processing vs not pre-processing

3. MSE vs log-loss

- If so, what's the threshold for M?

- Is there an under-parametrized regime in which solutions are
disconnected?
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The End



Gauss-Newton decomposition of the Hessian

Loss functions between the output, s, and label, y

o MSE ((s,y) = (s —y)°
e Hinge {(s,y) = max{0, sy}
o NLL {(sy,y) = —s, +log ), exps,

are all convex in their output: s = f(w; x)
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Gauss-Newton decomposition of the Hessian

With £ o f in mind, the gradient and the Hessian per loss:

VU(F(w)) = £ (F(w))VF(w)
V2U(f(w)) = ' (F(w))VF(w)VF(w)T + 0/ (F(w))Vf(w)

then average over the training data:

P P
V2L(w) = %Zf”(f(w))Vf(w)Vf(w)T - %Zz’(f(w))v%(w)
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