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Components of training an image classifier

For fixed architecture of ResNet 56 we have:

1. Preprocessing: normalize, shift and flip (show examples)

2. Momentum

3. Weight decay (aka L2 regularization)

4. Learning rate scheduling
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Components of training an image classifier

Dataset: CIFAR10 raw
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Components of training an image classifier

Dataset: CIFAR10 processed (normalize, shift and flip)

In a way, the number of trainin samples is not 50K anymore!
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Components of training an image classifier

With all the ingredients (mom, wd, prep) we get 93.1% accuracy on C10!

• Remove momentum only: -1.5%

• Remove weight decay only: -3.2%

• Remove preprocessing only: -6.3%

• Remove all three: -12.5%

What components are essentially necessary?
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Expressivity and overfitting

• Regression vs. classification is there a fundamental reason that

makes one harder?

• Is it always possible to memorize the training set? (9 examples in

CIFAR100)

• What’s happening to the loss when the accuracy is stable?
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State of Image Recognition - http://clarifai.com/
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State of Image Recognition - http://clarifai.com/
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State of Image Recognition - http://clarifai.com/
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State of Image Recognition - http://clarifai.com/

Is all we do still just a fancy curve fitting?
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Geometry of the training surface
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The Loss Function

1. Take a dataset and split it into two parts: Dtrain & Dtest

2. Form the loss using only Dtrain:

Ltrain(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

`(y , f (w ; x))

3. Find: w∗ = arg minLtrain(w)

4. ...and hope that it will work on Dtest .
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The Loss Function

Some quantites:

• M : number of parameters w ∈ RM

• N : number of neurons in the first layer

• P : number of examples in the training set |Dtrain|
• d : number of dimension in the input x ∈ Rd

• k : number of classes in the dataset

Question: When do we call a model over-parametrized?

Question: How to minimize the high-dimensional, non-convex loss?
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GD is bad use SGD

“Stochastic gradient learning in neural networks”, Léon Bottou, 1991
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GD is bad use SGD

Bourelly (1988)
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GD is bad use SGD

Simple fully-connected network on MNIST: M ∼ 450K (right)
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Average number of mistakes: SGD 174, GD 194
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GD is bad use SGD

The network has only 5 neurons in the hidden layer!

15



GD vs SGD in the mean field approach

Take `(y , f (w ; x)) = (y − f (w ; x))2 where f (w ; x) = 1
N

∑N
i=1 σ(wi , x)

Expand the square and take expectation over data:

L(w) = Const +
2

N

N∑
i=1

V (wi ) +
1

N2

N∑
i,j=1

U(wi ,wj)

Population risk in the large N limit:

L(ρ) = Const + 2

∫
V (w)ρ(dw) +

∫
U(w1,w2)ρ(dw1)ρ(dw2)

Proposition: Minimizing the two functions are the same
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GD vs SGD in the mean field approach

Write the gradient update per example and rearrange:

∆wi = 2η∇wiσ(wi , x)(y − 1

N

N∑
i=1

σ(wi , x))

= 2η∇wi yσ(wi , x)− 2η∇wiσ(wi , x)
1

N

N∑
i=1

σ(wi , x)

Taking expectation over (past) data gives the update (ith neuron):

E(∆w |past)/2η = −∇wiV (wi )−
1

N

N∑
j=1

∇wiU(wi ,wj)

- Then pass to the large N limit (with proper timestep scaling)

- And write the continuity equation for the density.
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GD vs SGD in the mean field approach

References:

1. Mei, Montanari, Nguyen 2018 (above approach)

2. Sirignano, Spiliopoulos 2018 (harder to read)

3. Rotskoff, Vanden-Eijnden 2018 (additional diffusive and noise terms,

as well as a CLT)

4. Wang, Mattingly, Lu 2017 (same approach different problems)

Is it really the case that in the large N limit, GD and SGD are the same?

18



Quick look into Rotskoff and Vanden-Eijnden

Here θ is learning rate / batch size
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SGD is really special

Where common wisdom may be true (Keskar et. al. 2016.):

F2: fully connected, TIMIT (M = 1.2M)

C1: conv-net, CIFAR10 (M = 1.7M)

• Similar training error, but gap in the test error.
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SGD is really special

Moreover, Keskar et. al. (2016) observe that:

• LB → sharp minima

• SB → wide minima

Considerations around the idea of sharp/wide minima:

Pardalos et. al. 1993 (More recently: Zecchina et. al., Bengio et. al., ...)
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LB SB and outlier eigenvalues of the Hessian

MNIST on a simple fully-connected network. Increasing the batch-size

leads to larger outlier eigenvalues.
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Geometry of redundant over-parametrization

Figure: w 2 (left) vs. (w1w2)
2 (right)
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Searching for sharp basins

Repeating the LB/SB with a twist

1. Train a large batch CIFAR10 on a bare AlexNet

2. At the end point switch to small batch
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Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions
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Connecting arbitrary solutions

1. Freeman and Bruna 2017: barriers of order 1/M

2. Draxler et. al. 2018: no barriers between solutions

String method video: https://cims.nyu.edu/~eve2/string.htm 26
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What about GD + noise vs SGD

A walk with SGD, Xing et. al. 2018

String method video: https://cims.nyu.edu/~eve2/string.htm
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Back to the beginning

Does this mean any solution, obtained by any method is in the same

basin?

1. Different algorithms

2. Pre-processing vs not pre-processing

3. MSE vs log-loss

- If so, what’s the threshold for M?

- Is there an under-parametrized regime in which solutions are

disconnected?
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The End
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Gauss-Newton decomposition of the Hessian

Loss functions between the output, s, and label, y

• MSE `(s, y) = (s − y)2

• Hinge `(s, y) = max{0, sy}
• NLL `(sy , y) = −sy + log

∑
y ′ exp sy ′

are all convex in their output: s = f (w ; x)
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Gauss-Newton decomposition of the Hessian

With ` ◦ f in mind, the gradient and the Hessian per loss:

∇`(f (w)) = `′(f (w))∇f (w)

∇2`(f (w)) = `′′(f (w))∇f (w)∇f (w)T + `′(f (w))∇2f (w)

then average over the training data:

∇2L(w) =
1

P

P∑
i=1

`′′(f (w))∇f (w)∇f (w)T +
1

P

P∑
i=1

`′(f (w))∇2f (w)

30


