
An Empirical Look at the Loss Landscape

HEP AI - September 4, 2018

Components of training an image classifier

For fixed architecture of ResNet 56 we have:

1. Preprocessing: normalize, shift and flip (show examples)

2. Momentum

3. Weight decay (aka L2 regularization)

4. Learning rate scheduling

1

Components of training an image classifier

Dataset: CIFAR10 raw

2

Components of training an image classifier

Dataset: CIFAR10 processed (normalize, shift and flip)

In a way, the number of trainin samples is not 50K anymore!

3

Components of training an image classifier

With all the ingredients (mom, wd, prep) we get 93.1% accuracy on C10!

• Remove momentum only: -1.5%

• Remove weight decay only: -3.2%

• Remove preprocessing only: -6.3%

• Remove all three: -12.5%

What components are essentially necessary?

4

Expressivity and overfitting

• Regression vs. classification is there a fundamental reason that

makes one harder?

• Is it always possible to memorize the training set? (9 examples in

CIFAR100)

• What’s happening to the loss when the accuracy is stable?

5

State of Image Recognition - http://clarifai.com/

6

State of Image Recognition - http://clarifai.com/

7

State of Image Recognition - http://clarifai.com/

8

State of Image Recognition - http://clarifai.com/

Is all we do still just a fancy curve fitting?

9

Geometry of the training surface

9

The Loss Function

1. Take a dataset and split it into two parts: Dtrain & Dtest

2. Form the loss using only Dtrain:

Ltrain(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

`(y , f (w ; x))

3. Find: w∗ = arg minLtrain(w)

4. ...and hope that it will work on Dtest .

10

The Loss Function

Some quantites:

• M : number of parameters w ∈ RM

• N : number of neurons in the first layer

• P : number of examples in the training set |Dtrain|
• d : number of dimension in the input x ∈ Rd

• k : number of classes in the dataset

Question: When do we call a model over-parametrized?

Question: How to minimize the high-dimensional, non-convex loss?

11

GD is bad use SGD

“Stochastic gradient learning in neural networks”, Léon Bottou, 1991

12

GD is bad use SGD

Bourelly (1988)

13

GD is bad use SGD

Simple fully-connected network on MNIST: M ∼ 450K (right)

0 10000 20000 30000 40000 50000
10-4

10-3

10-2

10-1

100

101 Cost vs. step no for 500-300 network

SGD train

SGD test

GD train

GD test

Average number of mistakes: SGD 174, GD 194
14

GD is bad use SGD

The network has only 5 neurons in the hidden layer!

15

GD vs SGD in the mean field approach

Take `(y , f (w ; x)) = (y − f (w ; x))2 where f (w ; x) = 1
N

∑N
i=1 σ(wi , x)

Expand the square and take expectation over data:

L(w) = Const +
2

N

N∑
i=1

V (wi) +
1

N2

N∑
i,j=1

U(wi ,wj)

Population risk in the large N limit:

L(ρ) = Const + 2

∫
V (w)ρ(dw) +

∫
U(w1,w2)ρ(dw1)ρ(dw2)

Proposition: Minimizing the two functions are the same

16

GD vs SGD in the mean field approach

Write the gradient update per example and rearrange:

∆wi = 2η∇wiσ(wi , x)(y − 1

N

N∑
i=1

σ(wi , x))

= 2η∇wi yσ(wi , x)− 2η∇wiσ(wi , x)
1

N

N∑
i=1

σ(wi , x)

Taking expectation over (past) data gives the update (ith neuron):

E(∆w |past)/2η = −∇wiV (wi)−
1

N

N∑
j=1

∇wiU(wi ,wj)

- Then pass to the large N limit (with proper timestep scaling)

- And write the continuity equation for the density.

17

GD vs SGD in the mean field approach

References:

1. Mei, Montanari, Nguyen 2018 (above approach)

2. Sirignano, Spiliopoulos 2018 (harder to read)

3. Rotskoff, Vanden-Eijnden 2018 (additional diffusive and noise terms,

as well as a CLT)

4. Wang, Mattingly, Lu 2017 (same approach different problems)

Is it really the case that in the large N limit, GD and SGD are the same?

18

Quick look into Rotskoff and Vanden-Eijnden

Here θ is learning rate / batch size

19

SGD is really special

Where common wisdom may be true (Keskar et. al. 2016.):

F2: fully connected, TIMIT (M = 1.2M)

C1: conv-net, CIFAR10 (M = 1.7M)

• Similar training error, but gap in the test error.

20

SGD is really special

Moreover, Keskar et. al. (2016) observe that:

• LB → sharp minima

• SB → wide minima

Considerations around the idea of sharp/wide minima:

Pardalos et. al. 1993 (More recently: Zecchina et. al., Bengio et. al., ...)
21

LB SB and outlier eigenvalues of the Hessian

MNIST on a simple fully-connected network. Increasing the batch-size

leads to larger outlier eigenvalues.

510152025303540
Order of largest eigenvalues

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ei
ge

nv
al

ue
s

1e1 Right eigenvalue distribution
Heuristic threshold
Small batch
Large batch

22

Geometry of redundant over-parametrization

Figure: w 2 (left) vs. (w1w2)
2 (right)

23

Searching for sharp basins

Repeating the LB/SB with a twist

1. Train a large batch CIFAR10 on a bare AlexNet

2. At the end point switch to small batch

0 10000 20000 30000 40000 50000
Number of steps (measurements every 100)

0.0

0.5

1.0

1.5

2.0

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Continuous training in two phases
Train acc
Test acc

24

Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

25

Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

25

Searching for sharp basins

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

25

Connecting arbitrary solutions

1. Freeman and Bruna 2017: barriers of order 1/M

2. Draxler et. al. 2018: no barriers between solutions

String method video: https://cims.nyu.edu/~eve2/string.htm 26

https://cims.nyu.edu/~eve2/string.htm

What about GD + noise vs SGD

A walk with SGD, Xing et. al. 2018

String method video: https://cims.nyu.edu/~eve2/string.htm

27

https://cims.nyu.edu/~eve2/string.htm

Back to the beginning

Does this mean any solution, obtained by any method is in the same

basin?

1. Different algorithms

2. Pre-processing vs not pre-processing

3. MSE vs log-loss

- If so, what’s the threshold for M?

- Is there an under-parametrized regime in which solutions are

disconnected?

28

The End

28

Gauss-Newton decomposition of the Hessian

Loss functions between the output, s, and label, y

• MSE `(s, y) = (s − y)2

• Hinge `(s, y) = max{0, sy}
• NLL `(sy , y) = −sy + log

∑
y ′ exp sy ′

are all convex in their output: s = f (w ; x)

29

Gauss-Newton decomposition of the Hessian

With ` ◦ f in mind, the gradient and the Hessian per loss:

∇`(f (w)) = `′(f (w))∇f (w)

∇2`(f (w)) = `′′(f (w))∇f (w)∇f (w)T + `′(f (w))∇2f (w)

then average over the training data:

∇2L(w) =
1

P

P∑
i=1

`′′(f (w))∇f (w)∇f (w)T +
1

P

P∑
i=1

`′(f (w))∇2f (w)

30

