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@ Linear models:

o Baldi-Hornik (1989)
o Kawaguchi-Lu (2016)

@ One hidden layer:

o Ge-Lee-Ma (2016)
e Mei-Montanari-Nguyen (2018)
o Venturi-Bandeira-Bruna (2018)

© More than one hidden layer:

o Gori-Tesi (1992) + Nguyen-Hein (2017)
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(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

Figure: From Visualizing the Loss Landscape of Neural Nets by Li, Xu,
Taylor, Studer, Goldstein
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But First ... Turns out Skip Connections are Good

(a) 110 layers, no skip connections (b) DenseNet, 121 layers

Figure 6: (left) The loss surfaces of ResNet-110-noshort, without skip connections. (right) DenseNet,
the current state-of-the-art network for CIFAR-10.

Figure: From Visualizing the Loss Landscape of Neural Nets by Li, Xu,
Taylor, Studer, Goldstein
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Setup to Baldi-Hornik (1989)

@ Suppose

X=(x,1<j<N), Y=(y,1<j<N), x;cR", y;€R™.
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Setup to Baldi-Hornik (1989)

@ Suppose
X=(x,1<j<N), Y=(y,1<j<N), x;€R", yjeR™

@ Define empirical (co)-variances:

Ty =Dy o= xx Tw =) vy
J J J
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Setup to Baldi-Hornik (1989)

@ Suppose
X=(x,1<j<N), Y=(y,1<j<N), x;€R", yjeR™

@ Define empirical (co)-variances:

Tyx =) v D= % Tw=D
J J J

@ Classical least squares regression

A* = argmin L(A) = ||AX — YH% = Z | Ax; — ysz
J

is a convex problem and can be solved by GD or analytically by
A = TyxT k.
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Setup to Baldi-Hornik (1989)

@ Q. What about rank-constrained least squares:

A% = argmin L(A) = || AX — Y7, rank(A) < k < n?
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Setup to Baldi-Hornik (1989)

@ Q. What about rank-constrained least squares:

A% = argmin L(A) = || AX — Y7, rank(A) < k < n?

@ A. A} is top k principal components of A*.
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Setup to Baldi-Hornik (1989)

@ Q. What about rank-constrained least squares:

A% = argmin L(A) = || AX — Y7, rank(A) < k < n?

@ A. A} is top k principal components of A*.
@ Q. Note that if Ais n x m then

rank(A) <k = A=BC, B—nxk, C— kxm.

Boris Hanin Loss Surface



Setup to Baldi-Hornik (1989)

@ Q. What about rank-constrained least squares:

A% = argmin L(A) = || AX — Y7, rank(A) < k < n?

@ A. A} is top k principal components of A*.
@ Q. Note that if Ais n x m then

rank(A) <k = A=BC, B—nxk, C— kxm.

@ RC least squares <+ linear net with one layer and L2 loss:
(A*, B¥) = argmin L(A, B) = |ABX — Y||7

upto A— AC, B— C 1B, C e GLy.
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Setup to Baldi-Hornik (1989)

@ Q. What about rank-constrained least squares:

A% = argmin L(A) = || AX — Y7, rank(A) < k < n?

@ A. A} is top k principal components of A*.
@ Q. Note that if Ais n x m then

rank(A) <k = A=BC, B—nxk, C— kxm.

@ RC least squares <+ linear net with one layer and L2 loss:
(A*, B¥) = argmin L(A, B) = |ABX — Y||7
upto A— AC, B— C 1B, C e GLy.

e Key. L(A, B) is not convex, so unclear if can solve by GD.
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Results of Baldi-Hornik (1989)

@ Suppose X xx invertible and X = ZYXZ)_()I(ZXY has full rank.

e Thm. All local minima of £L(A, B) are global minima. Thus,
GD should be fine.

Boris Hanin Loss Surface



Results of Baldi-Hornik (1989)

@ Suppose X xx invertible and X = ZYXZ)_()I(ZXY has full rank.

e Thm. All local minima of £L(A, B) are global minima. Thus,
GD should be fine.

@ Thm. The saddle points of L(A, B) correspond to
AB = proj,(A%),

where proj, is projection onto some k principal component
directions of A*.
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Results of Baldi-Hornik (1989)

@ Suppose X xx invertible and X = ZYXZ)_()I(ZXY has full rank.

e Thm. All local minima of £L(A, B) are global minima. Thus,
GD should be fine.

@ Thm. The saddle points of L(A, B) correspond to
AB = proj,(A%),

where proj, is projection onto some k principal component
directions of A*.

@ The proofs are by explicit computation.
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Proof Idea Baldi-Hornik (1989)

o Write £(A, B) = vec (ABX — Y)7 vec (ABX — Y).




Proof Idea Baldi-Hornik (1989)

o Write £(A, B) = vec (ABX — Y)7 vec (ABX — Y).

o Use identity
vec(ABC) = (CT ® A) vec (B)

to differentiate with respect to vec(A), vec(B).
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Proof Idea Baldi-Hornik (1989)

o Write £(A, B) = vec(ABX — Y)" vec (ABX — Y).
o Use identity
vec(ABC) = (CT ® A) vec (B)
to differentiate with respect to vec(A), vec(B).

@ Check that at critical point W = (A, B), we must have
PAYPa = PaY = PaY,

where Pg = proje(a)-
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Kawaguchi-Lu (2016)

@ Want to understand local minima of
E(Wl)"'a Wd) = ||Wd W].X_ YH%—':

when W4, ..., Wy have fixed shape.
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@ Want to understand local minima of
E(Wl)"'a Wd) = ||Wd W].X_ YH%—':
when W4, ..., Wy have fixed shape.

@ Thm. All local minima of £ are global minima.
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Kawaguchi-Lu (2016)

@ Want to understand local minima of
LW, W) =[Wy- WAX = Y7,
when W4, ..., Wy have fixed shape.
@ Thm. All local minima of £ are global minima.

@ |dea of Proof:

@ Every local minimum {W;} can be perturbed to local minimum
{/V\Z} with same value of loss and all /V\Z of full rank.
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@ Want to understand local minima of
LW, W) =[Wy- WAX = Y7,
when W4, ..., Wy have fixed shape.
@ Thm. All local minima of £ are global minima.

@ |dea of Proof:

@ Every local minimum {W;} can be perturbed to local minimum
{/V\Z} with same value of loss and all /V\Z of full rank.

@ Perturbations of /V|7j’s give all rank < min {layer widths}
pertrubations of [[; VV\J
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Kawaguchi-Lu (2016)

@ Want to understand local minima of
E(Wl)"'a Wd) = ||Wd W].X_ YH%—':
when W4, ..., Wy have fixed shape.

@ Thm. All local minima of £ are global minima.

@ |dea of Proof:

@ Every local minimum {W;} can be perturbed to local minimum
{/V\Z} with same value of loss and all /V\Z of full rank.

@ Perturbations of /V|7j’s give all rank < min {layer widths}
pertrubations of [[; VV\J

© Thus, {H#min /V|7J-, Wmin} is local minimum of Baldi-Hornik

problem. Hence, global minimum.
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Loss for One Layer, Gaussian Inputs: Ge-Lee-Ma (2016)
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Loss for One Layer, Gaussian Inputs: Ge-Lee-Ma (2016)

o Input/Output Distribution. Inputs x; ~ N(0,Id,) i.i.d. and
outputs y; produced by net with one hidden layer:

yj=a" Zaka (B> %)), bl = lla*[] = 1.
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Loss for One Layer, Gaussian Inputs: Ge-Lee-Ma (2016)

o Input/Output Distribution. Inputs x; ~ N(0,Id,) i.i.d. and
outputs y; produced by net with one hidden layer:

yj=a" Zaka (B> %)), bl = lla*[] = 1.

o Thm. If ||la|| = ||bk|| = 1, then L? population risk
E[lly(x.2,B) - y(x,a", B)|P]

is a sum of rank m tensor-norms:

> o

m>0

n 2

Db = @b
k=1

k=1

)

F

where o, are the Hermite coefficients of o :

~

o(t) =" % Hun ().

m>0
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Proof Ingredients for Ge-Lee-Ma (2016)




Proof Ingredients for Ge-Lee-Ma (2016)

© Orthogonality:
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Proof Ingredients for Ge-Lee-Ma (2016)

© Orthogonality:

@ Sum-product formula for Hermite polynomials:

d
n
Ho(x - y) Z()HHP,X, oy €RY, [l =1,

lpl=n
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Proof Ingredients for Ge-Lee-Ma (2016)

© Orthogonality:

@ Sum-product formula for Hermite polynomials:

Hn(x - y) = Z()HHM x,y €R? |yl =1,

lpl=n

where the sum is over all multi-indices p.

@ Wick formula

Hy(vTx) Hi(wTx) 1
E[ kk! H ]: ik 7 (VW)
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SGD for One Layer: Mei-Montanari-Nguyen (2018)




SGD for One Layer: Mei-Montanari-Nguyen (2018)

o Input/Output Distribution. Inputs x; ~ P i.i.d. and outputs
yj produced by net with one hidden layer:

Boris Hanin Loss Surface



SGD for One Layer: Mei-Montanari-Nguyen (2018)

o Input/Output Distribution. Inputs x; ~ P i.i.d. and outputs
yj produced by net with one hidden layer:

o L2 loss Ry(0) = 3E[|lyn — ¥11?] is pair interaction in potential:

Rip) = [ VO) A(0) + 5 [ U(en,62) dp™(60)dp ™62,
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SGD for One Layer: Mei-Montanari-Nguyen (2018)

o Input/Output Distribution. Inputs x; ~ P i.i.d. and outputs
yj produced by net with one hidden layer:

o L2 loss Ry(0) = 3E[|lyn — ¥11?] is pair interaction in potential:

Rip) = [ VO) A(0) + 5 [ U(en,62) dp™(60)dp ™62,

plus a constant where dp(N)(§) = Z,N:1 dp, and

V() = —E[yo.(x,0)], U(61,02) = E[o.(x, 01)0x(x, 62)].
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SGD for One Layer: Mei-Montanari-Nguyen (2018)

o Input/Output Distribution. Inputs x; ~ P i.i.d. and outputs
yj produced by net with one hidden layer:

o L2 loss Ry(0) = 3E[|lyn — ¥11?] is pair interaction in potential:

Rip) = [ VO) A(0) + 5 [ U(en,62) dp™(60)dp ™62,

plus a constant where dp(N)(§) = Z,N:1 dp, and

V() = —E[yo.(x,0)], U(61,02) = E[o.(x, 01)0x(x, 62)].

@ Q. What does SGD looks like in p—space?
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SGD for One Layer: Mei-Montanari-Nguyen (2018)

e Thm. Consider step sizes s, = €£(ke) and write pE(N) for

empirical measure after k GD steps. Then

pﬁl/ve) = Pt

as N — oo and € — 0, where p; evolves under gradient flow
for Wasserstein metric

Ot pr = f(t) Vy (Pt VQ\U(Q, Pt))
v(h,p) = V(0)+ / U(6,6"dp(8").

In particular, have a good approximation when k = t/e with
e, N7 < 1/input-dim.
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[?—loss in Deep and Wide Networks: Nguyen-Hein (2017)




[?—loss in Deep and Wide Networks: Nguyen-Hein (2017)

@ 0 — smooth, analytic, bounded

e N distinct training samples with L% —loss
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[?—loss in Deep and Wide Networks: Nguyen-Hein (2017)

@ 0 — smooth, analytic, bounded

e N distinct training samples with L% —loss

@ Thm. Fix a critical point. Suppose

© d layer k with ngy > N — 1 neurons with Hessian of loss
restricted to parameters in layers > k + 1 is non-degenerate

@ weight matrices in layers > k + 1 all have full column rank.

Then this critical point is a global minimum.

@ Rmk. Second condition requires “pyramidal” structure.
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Proof Idea of Nguyen-Hein (2017)




Proof Idea of Nguyen-Hein (2017)

o Thm. (Gori—Tesi 1992) If inputs are linearly independent,
layer widths monotonically decreasing, then any crit at which
the weight matrices have full rank is a global min.
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Proof Idea of Nguyen-Hein (2017)

o Thm. (Gori—Tesi 1992) If inputs are linearly independent,
layer widths monotonically decreasing, then any crit at which
the weight matrices have full rank is a global min.

o ldea. Backprop relates derivative of loss with respect to
activations at successive layers:

0L _ 9L popwi)
0 ActV) aActUH)T

where

pb) = Diag (gi)’ (preactg)) , 8=1,..., nj> .
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Proof Idea of Nguyen-Hein (2017)

o Thm. (Gori—Tesi 1992) If inputs are linearly independent,
layer widths monotonically decreasing, then any crit at which
the weight matrices have full rank is a global min.

o ldea. Backprop relates derivative of loss with respect to
activations at successive layers:
oL oL Hiypwo)

__ D ,
9 Act) aActUH)T

where

pb) = Diag (gi)’ (preactg)) , 8=1,..., nj> .

e If ¢’ #0 and WU) has full rank, then can do “forward prop”

oL FY -l
- DT | 7G) (0T
AT = aag0 ) 129207]
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Proof Idea of Nguyen-Hein (2017)

o Thm. (Gori—Tesi 1992) If inputs are linearly independent,
layer widths monotonically decreasing, then any crit at which
the weight matrices have full rank is a global min.

o ldea. Backprop relates derivative of loss with respect to
activations at successive layers:
oL oL Hiypwo)

__ D ,
9 Act) aActUH)T

where

pb) = Diag (gi)’ (preactg)) , 8=1,..., nj> .

e If ¢’ #0 and WU has full rank, then can do “forward prop”
oL _ 0L Gp (2620 T}‘l‘
Attt At
@ Now just transplant this condition to some intermediate layer.
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)

@ Consider one layer network with no bias, L2 loss, and hidden
layer of width p

O(x,0) = Up(Wx),  L(0) =E [||q>(x,e) - y||2} .
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)

@ Consider one layer network with no bias, L2 loss, and hidden
layer of width p

O(x,0) = Up(Wx),  L(0) =E [||q>(x,e) - y||2} .

@ Consider span of possible features

V :=Span{¢,, weR"}, Yw = p((w,))
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)

@ Consider one layer network with no bias, L2 loss, and hidden
layer of width p

O(x,0) = Up(Wx),  L(0) =E [||q>(x,e) - y||2} .

@ Consider span of possible features

V :=Span{¢,, weR"}, Yw = p((w,))

@ Thm. If p > dim(V), then there are no bad local minima. If
p > 2dim(V), then all local=global minima are connected.
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)

@ Consider one layer network with no bias, L2 loss, and hidden
layer of width p

O(x,0) = Up(Wx),  L(0) =E [||q>(x,e) - y||2} .

@ Consider span of possible features

V :=Span{¢,, weR"}, Yw = p((w,))

@ Thm. If p > dim(V), then there are no bad local minima. If
p > 2dim(V), then all local=global minima are connected.

o Ex. p = polynomial, linear
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Setup for Proof in Venturi-Bandeira-Bruna (2018)
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.

e V is reproducing kernel Hilbert space (RKHS):
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
e V is reproducing kernel Hilbert space (RKHS):

o Choose basis {wwj} and define (-,-) with {1/),,.,j }j = ONB
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
e V is reproducing kernel Hilbert space (RKHS):
o Choose basis {wwj} and define (-,-) with {1/),,.,j }j = ONB

o Define reproducing kernel Ky (x,y) := > thw;(x)¥w,(y)-
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
e V is reproducing kernel Hilbert space (RKHS):
o Choose basis {wwj} and define (-,-) with {1/),,.,j }j = ONB

o Define reproducing kernel Ky (x,y) := > thw;(x)¥w,(y)-

o ¢(x):= Ky(x,-) € V is kernel of evaluation at x
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
e V is reproducing kernel Hilbert space (RKHS):
o Choose basis {wwj} and define (-,-) with {1/),,.,j }j = ONB

o Define reproducing kernel Ky (x,y) := > thw;(x)¥w,(y)-

o ¢(x):= Ky(x,-) € V is kernel of evaluation at x

o Then ¢, (x) = (Yw, d(x))
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

e Output ®(x,0) € V.
e V is reproducing kernel Hilbert space (RKHS):
o Choose basis {wwj} and define (-,-) with {1/),,.,j }j = ONB

o Define reproducing kernel Ky (x,y) := > thw;(x)¥w,(y)-

o ¢(x):= Ky(x,-) € V is kernel of evaluation at x

o Then ¢, (x) = (Yw, d(x))

e Obtain & = (Uy(W), ¢(x))
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