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But First ... Turns out Skip Connections are Good
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ABSTRACT

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, is not well understood.
In this paper, we explore the structure of neural loss functions, and the effect of
loss landscapes on generalization, using a range of visualization methods. First,
we introduce a simple “filter normalization” method that helps us visualize loss
function curvature, and make meaningful side-by-side comparisons between loss
functions. Then, using a variety of visualizations, we explore how network archi-
tecture affects the loss landscape, and how training parameters affect the shape of
minimizers.

1 INTRODUCTION

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions (Blum & Rivest, 1989), simple gradient methods often find global
minimizers (parameter configurations with zero or near-zero training loss), even when data and labels
are randomized before training (Zhang et al., 2017). However, this good behavior is not universal;
the trainability of neural nets is highly dependent on network architecture design choices, the choice
of optimizer, variable initialization, and a variety of other considerations. Unfortunately, the effect

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.
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Figure: From Visualizing the Loss Landscape of Neural Nets by Li, Xu,
Taylor, Studer, Goldstein
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that different architectures have extreme differences in non-convexity structure that answer these
questions, and that these differences correlate with generalization error.

6.1 EXPERIMENTAL SETUP

To understand the effects of network architecture on non-convexity, we trained a number of networks,
and plotted the landscape around the obtained minimizers using the filter-normalized random direction
method described in Section 4. We consider three classes of neural networks:

• Residual networks that are optimized for performance on CIFAR (He et al., 2016). We
consider ResNet-20, ResNet-56, and ResNet-110, where each name is labeled with the
number of convolutional layers it has.

• “VGG-like” networks that do not contain shortcut/skip connections. We produced these
networks simply by removing the skip connections from the CIFAR-optimized ResNets. We
call these networks ResNet-20-noshort, ResNet-56-noshort, and ResNet-110-noshort. Note
that these networks do not all perform well on the CIFAR-10 task. We use them purely for
experimental purposes to explore the effect of shortcut connections.

• “Wide” ResNets that have been optimized for ImageNet rather than CIFAR. These networks
have more filters per layer than the CIFAR optimized networks, and also have different
numbers of layers. These models include ResNet-18, ResNet-34, and ResNet-50.

All models are trained on the CIFAR-10 dataset using SGD with Nesterov momentum, batch-size
128, and 0.0005 weight decay for 300 epochs. The learning rate was initialized at 0.1, and decreased
by a factor of 10 at epochs 150, 225 and 275. Deeper experimental VGG-like networks (e.g.,
ResNet-56-noshort, as described below) required a smaller initial learning rate of 0.01.

High resolution 2D plots of the minimizers for different neural networks are shown in Figure 7.
Results are shown as contour plots rather than surface plots because this makes it extremely easy to
see non-convex structures and evaluate sharpness. For surface plots of ResNet-56, see Figure 1. Note
that the center of each plot corresponds to the minimizer, and the two axes parameterize two random
directions with filter-wise normalization as in (1). We make several observations below about how
architecture effects the loss landscape. We also provide loss and error values for these networks in
Table 3, and convergence curves in Figure 22 of the Appendix.

6.2 THE EFFECT OF NETWORK DEPTH

From Figure 7, we see that network depth has a dramatic effect on the loss surfaces of neural networks
when skip connections are not used. The network ResNet-20-noshort has a fairly benign landscape
dominated by a region with convex contours in the center, and no dramatic non-convexity. This

(a) 110 layers, no skip connections (b) DenseNet, 121 layers

Figure 6: (left) The loss surfaces of ResNet-110-noshort, without skip connections. (right) DenseNet,
the current state-of-the-art network for CIFAR-10.

8Figure: From Visualizing the Loss Landscape of Neural Nets by Li, Xu,
Taylor, Studer, Goldstein
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Setup to Baldi-Hornik (1989)

Suppose

X = (xj , 1 ≤ j ≤ N) , Y = (yj , 1 ≤ j ≤ N) , xj ∈ Rn, yj ∈ Rm.

Define empirical (co)-variances:

ΣYX =
∑
j

yjx
T
j , ΣXX =

∑
j

xjx
T
j , ΣYY =

∑
j

yjy
T
j .

Classical least squares regression

A∗ = argminL(A) = ‖AX − Y ‖2F =
∑
j

‖Axj − yj‖2

is a convex problem and can be solved by GD or analytically by

A∗ = ΣYXΣ−1XX .
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Setup to Baldi-Hornik (1989)

Q. What about rank-constrained least squares:

A∗k = argminL(A) = ‖AX − Y ‖2F , rank(A) ≤ k < n?

A. A∗k is top k principal components of A∗.

Q. Note that if A is n ×m then

rank(A) ≤ k ⇒ A = BC , B − n × k, C − k ×m.

RC least squares ↔ linear net with one layer and L2 loss:

(A∗,B∗) = argminL(A,B) = ‖ABX − Y ‖2F
up to A 7→ AC , B 7→ C−1B, C ∈ GLk .

Key. L(A,B) is not convex, so unclear if can solve by GD.
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Results of Baldi-Hornik (1989)

Suppose ΣXX invertible and Σ = ΣYXΣ−1XXΣXY has full rank.

Thm. All local minima of L(A,B) are global minima. Thus,
GD should be fine.

Thm. The saddle points of L(A,B) correspond to

AB = projk(A∗),

where projk is projection onto some k principal component
directions of A∗.

The proofs are by explicit computation.
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Proof Idea Baldi-Hornik (1989)

Write L(A,B) = vec (ABX − Y )T vec (ABX − Y ) .

Use identity

vec(ABC ) =
(
CT ⊗ A

)
vec (B)

to differentiate with respect to vec(A), vec(B).

Check that at critical point W = (A,B), we must have

PAΣPA = PAΣ = PAΣ,

where PA = projcol(A).
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Kawaguchi-Lu (2016)

Want to understand local minima of

L (W1, . . . ,Wd) = ‖Wd · · ·W1X − Y ‖2F ,

when W1, . . . ,Wd have fixed shape.

Thm. All local minima of L are global minima.

Idea of Proof:

1 Every local minimum {Wj} can be perturbed to local minimum{
Ŵj

}
with same value of loss and all Ŵj of full rank.

2 Perturbations of Ŵ ′
j s give all rank ≤ min {layer widths}

pertrubations of
∏

j Ŵj .

3 Thus,
{∏

j 6=min Ŵj , Ŵmin

}
is local minimum of Baldi-Hornik

problem. Hence, global minimum.
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2 Perturbations of Ŵ ′
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Ŵj

}
with same value of loss and all Ŵj of full rank.
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Loss for One Layer, Gaussian Inputs: Ge-Lee-Ma (2016)

Input/Output Distribution. Inputs xj ∼ N(0, Idn) i.i.d. and
outputs yj produced by net with one hidden layer:

yj = a∗Tσ (B∗x) =
n∑

k=1

a∗kσ(〈b∗k , xj〉), ‖b∗k‖ = ‖a∗‖ = 1.

Thm. If ‖a‖ = ‖bk‖ = 1, then L2 population risk

E
[
‖y(x , a,B)− y(x , a∗,B∗)‖2

]
is a sum of rank m tensor-norms:∑

m≥0
σ̂2m

∥∥∥∥∥
n∑

k=1

akb
⊗m
k −

n∑
k=1

a∗k(b∗k)⊗m

∥∥∥∥∥
2

F

,

where σ̂m are the Hermite coefficients of σ :

σ(t) =
∑
m≥0

σ̂m
m!

Hm(t).
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Proof Ingredients for Ge-Lee-Ma (2016)

1 Orthogonality:∫
R
Hn(x)Hm(x)e−x

2/2 dx√
2π

= δn=mn!.

2 Sum-product formula for Hermite polynomials:

Hn(x · y) =
∑
|p|=n

(
n

p

) d∏
j=1

Hpj (xj)y
pj , x , y ∈ Rd , ‖y‖ = 1,

where the sum is over all multi-indices p.

3 Wick formula

E
[
Hk(vT x)

k!

Hj(w
T x)

j!

]
= δj=k

1

k!
〈v ,w〉k .
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1

k!
〈v ,w〉k .
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SGD for One Layer: Mei-Montanari-Nguyen (2018)

Input/Output Distribution. Inputs xj ∼ P i.i.d. and outputs
yj produced by net with one hidden layer:

yj =
1

N

N∑
i=1

σ∗(x ; θi ) =
1

N

N∑
i=1

aiσ (〈x ,wi 〉+ bi ) .

L2 loss RN(θ) = 1
2E[‖yN − ŷ‖2] is pair interaction in potential:

R(ρ) :=

∫
V (θ)d ρ(N)(θ) +

1

2

∫
U(θ1, θ2) dρ(N)(θ1)dρ(N)(θ2),

plus a constant where dρ(N)(θ) =
∑N

i=1 δθi and

V (θ) = −E [yσ∗(x , θ)] , U(θ1, θ2) = E [σ∗(x , θ1)σ∗(x , θ2)] .

Q. What does SGD looks like in ρ−space?
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SGD for One Layer: Mei-Montanari-Nguyen (2018)

Thm. Consider step sizes sk = εξ(kε) and write ρ
(N)
k for

empirical measure after k GD steps. Then

ρ
(N)
t/ε =⇒ ρt

as N →∞ and ε→ 0, where ρt evolves under gradient flow
for Wasserstein metric

∂t ρt = ξ(t)∇θ (ρt ∇θΨ(θ, ρt))

Ψ(θ, ρ) := V (θ) +

∫
U(θ, θ′)dρ(θ′).

In particular, have a good approximation when k = t/ε with
ε,N−1 � 1/input-dim.
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L2−loss in Deep and Wide Networks: Nguyen-Hein (2017)

σ − smooth, analytic, bounded

N distinct training samples with L2−loss

Thm. Fix a critical point. Suppose

1 ∃ layer k with nk ≥ N − 1 neurons with Hessian of loss
restricted to parameters in layers ≥ k + 1 is non-degenerate

2 weight matrices in layers ≥ k + 1 all have full column rank.

Then this critical point is a global minimum.

Rmk. Second condition requires “pyramidal” structure.
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Proof Idea of Nguyen-Hein (2017)

Thm. (Gori−Tesi 1992) If inputs are linearly independent,
layer widths monotonically decreasing, then any crit at which
the weight matrices have full rank is a global min.

Idea. Backprop relates derivative of loss with respect to
activations at successive layers:

∂L
∂ Act(j)

=
∂L

∂ Act(j+1)
D(j)W (j)︸ ︷︷ ︸

Z (j)

,

where

D(j) = Diag
(
φ′
(
preact

(j)
β

)
, β = 1, . . . , nj

)
.

If φ′ 6= 0 and W (j) has full rank, then can do “forward prop”

∂L
∂ Act(j+1)

=
∂L

∂ Act(j)
Z (j)T

[
Z (j)Z (j)T

]−1.
Now just transplant this condition to some intermediate layer.
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Finite Intrinsic Dimension: Venturi-Bandeira-Bruna (2018)

Consider one layer network with no bias, L2 loss, and hidden
layer of width p

Φ(x , θ) = Uρ (Wx) , L(θ) := E
[
‖Φ(X , θ)− Y ‖2

]
.

Consider span of possible features

V := Span {ψw , w ∈ Rn} , ψw := ρ (〈w , ·〉)

Thm. If p ≥ dim(V ), then there are no bad local minima. If
p ≥ 2 dim(V ), then all local=global minima are connected.

Ex. ρ = polynomial, linear
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Setup for Proof in Venturi-Bandeira-Bruna (2018)

Output Φ(x , θ) ∈ V .

V is reproducing kernel Hilbert space (RKHS):

Choose basis
{
ψwj

}
and define 〈·, ·〉 with

{
ψwj

}
j

= ONB

Define reproducing kernel KV (x , y) :=
∑

j ψwj (x)ψwj (y).

φ(x) := KV (x , ·) ∈ V is kernel of evaluation at x

Then ψw (x) = 〈ψw , φ(x)〉

Obtain Φ = 〈Uψ(W ), φ(x)〉
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