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Motivation

Inductive bias: assumptions made about the class of target functions
o We should incorporate our priors regarding desired task

e Full understanding of the inductive bias of existing networks (and the
networks we want to design) is lacking.

For instance: CNN architecture has many design elements currently made ~
heuristically: number of layers, distribution of channels (this paper), pooling
pattern, convolution kernel size and stride, ...

e Contrast with e.qg. “expressive efficiency.”

e (This talk is only about representation: no optimization.)



Tensor Preliminaries

Terminology:
e Each index of tensor is a mode, order of a tensor = number of modes
Tensor A with elements Ag4,4,..dy, di € [M;i] =
{1,...,M;}, has order N and € RMi1%:-XxMn

e Matricization of a tensor with respect to a partition:

Let A be a tensor of order N with dimensions M;
in each mode i € [N]. The matricization of A w.r.t.
the partition (I,J) is written [[A]]; ; and has shape
(T, Mi,) x (T2, M3,).

t=1 it

e A rank-1tensor is the tensor product of vectors:
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Model: Convolutional Arithmetic Circuits (ConvAC)

A number of works by (overlapping) authors on convolutional arithmetic circuits.
e View them as “representative of the class of convolutional NNs.”

e Usual CNNs have pointwise nonlinearities following convolution and max or
average pooling.

e ConvACs have linear activations and product pooling (the nonlinear part).
o Because amenable to theoretical analysis.
o (Even if different .... get testable predictions? — verify empirically.)



ConvAC Computation

Input X = (x1,...,xzn) with x; € R®.

First layer: representation layer
e M representation functions fy,, ..., fg,, : R® — R applied to each local patch x;.

e Example: fp,(z) = o(wlz + by) with 65 = (wg,ba)

Following layers £ = 0,...,L — 1:
e Each begins with a 1 X 1 conv, with ry_; input channels and r;, output channels.

e Followed by spatial (same channel) pooling that takes products over non-overlapping windows. Final pooling
will be global, over all remaining dimensions — r;,_; dim output vector.

Final dense linear layer: r;,_; — Y dimensional output for Y classes



Model: ConvAC
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Interpret ~ Quantum Wavefunction
General quantum state:

M
D Agay V) ® - @ [Yay)

di...dny=1

Consider the following product state:
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M . . .
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ConvAC



Why?

e “Entanglement measures as natural quantifiers of
dependencies”

e In this domain, have a better understanding of how
representation is tied to structure (of quantum states)

dim(H*) dim(#H?B) : : :
e.g. things like Schmidt number (rank of
|¢> — Z Z ([[-A]]A,B)a,ﬁ |¢&4> & |¢§> matricization) or entanglement entropy...
a=1 B=1

Specifically, we will import some (recently proven) results from the quantum side
to inform a particular design choice: distribution of channel sizes in the network.



Aside: separation rank

Measure distance from separability via notion of separation rank
For a function h : (R®)Y — R, the separation rank w.r.t the partition (I,J) is the minimum R such that

h(z1, .. Zgu (x5 .. - Li| gu(m]l’ - ,(le‘,:)
Claim (see [1]):

The separation rank sep(hy; I, J) of the function computed by the ConvAC is equal to the (matrix) rank of [[AY]]; ;
(i.e. the Schmidt number).

Also ([1 ]) Finally, sep(hy; I, J) can be related to the L? distance of h from the set of separable functions w.r.t (I, J). Let

D(h I, ']) ||h|| fq g’ €L2Hh(m17 mN) _g(wiu ""mi_‘u)g,(mjn---awju )”

Then D(h,I,J) S ‘/1—‘ m.

[1]. Cohen & Shashua. arxiv 1605:06743, ICLR 2017.



Recast ConvAC as a Tensor Network
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Example of a Shallow ConvAC — TN
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ky € [K] ks € [K] kn-1 € [K] |kn € [K] (AISO known as a

CP decomposition)
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ConvAC/TN as a Graph

Important elements now: connectivity among individual tensors and the bond

dimension on each edge

e Bond dimension = number of channels (feature maps)

G(V, E)
V7 = thuvinputsl
c: E—>N

We will analyze the cuts between
input nodes (specifically, a
partition into sets A, B).

P =
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A Definition

An edge-cut set w.r.t the partition V4 W VB = VinP¥s ig g set of edges C s.t. 3
a partition VAWVE =V with VA c VA, VB c VB, and C = {(u,v) € E : u €
VA ve VB

Let C = {e1,...,e|c|}. Then the multiplicative cut weight is = product of all bond
dimensions along the cut:

C]

We = H c(e;)

i=1



Bounds on Entanglement

Specifically, the Schmidt entanglement measure (importing a known bound).

Claim: Let (A, B) be a partition of [N] and [[AY]] , 5 be the matriciza-
tion w.r.t (A, B) of the convolutional weights tensor AY with pooling
window of size 2. Then the rank of the matricization [[AY]] , 5 obeys:

[A*]] 4,5 < min cW¢

1]
Compare to classical T 1()
min-cut/max-flow in a m 10 | g
graph. \
N 10
See e.g. S. Cui, et al. arxiv 1508.04644. —/ X /"}1“ i




Quantum Min-Cut/Max-Flow

Why? Consider the following bipartition and ways of contracting the network:

d) b)
k —_— ll (1"1 ]\1 (1"1
\ / ~— k1 i d,,._,_ ko db,
/ / e \/ b 1 = Y
A / o 2 — | f—" 4| kicy dy,y;
- &) 9 | s
/: : a N c)
Ry 2 \ // — l
1 r
d”w ’ \ / k|(v| \ \ 1[‘ | — IIX]]A,C [D)]]c,[; T
We

([Ala,B8)ir = Y ([X]4,0)im([V]c,B)mr

m=1

Leave the network with an
inner (composite) index left
uncontracted, so as to get
a product of two matrices.
Then because rank is
limited by the inner
dimension, we have an
inequality.



Quantum Min-Cut/Max-Flow

General pooling case (window size > 2): need to adjust upper bound.

(In this case, delta tensor forces indices to be the same -- reduced dimensionality.)

. 10 b 10
e\ ) _ A Only count repeated edges
0/ NN, 28— . / PN o from the Delta tensor once
\ 3 \ in the multiplicative cut
d 3 \ 10 H
N ) 19— o | S 3 weight.
mén We =16 m1n We =12

(Note implication for a shallow network, which has global pooling.)



Bounds on Entanglement

See paper for a lower bound
on rank of matricization
(Schmidt rank).

For bounds to be useful, would like them to be tight.

(b)

5 ["min cut separating | from J

= separation rank w.r.t. (l,J)

Their simulations (Gaussian weights and channel # drawn from some set)
show negligible deviations from the upper bound (min cut value).




Example

We = M® i | £=3
We = M? .1 T e Mlog,€] = 2
We =M 121 % a min We = f(M,ro,71,72)
We = M® . r3 ro I |
_/ e 7 Tmmm
— | | |
e ey Mg <N

For shorter ranged correlations, channel distribution in lower layers matters.



Example

a) Interleaved partition b) Left-right partition

i 2 N/4
anterleaved _ m1n(r0 / , MN/Z)

left-right : o(L—2-1) N/4 2 N/2
W gh = MNP E T T Ly T ,...,ro/ , M /) (L=logz(N))



An Experiment

Task:

64 x 64 binary MNIST in random positions.

“Local” task: digits resized to 8 x 8 (within 64 x 64).
“Global” task: resized to 32 x 32.

Architecture:
Two networks, only difference between them is channel ordering scheme.

First (representation) layer: 3 x 3 shared conv (with stride 1)

Followed by 6 hidden layers, each with 1 x 1 shared conv —» ReLU — 2 x 2
max pooling (with stride 2).

Final layer Y = 10 classes.



An Experiment

Ordering scheme (same total number of parameters = 3172 + 50r):

o Wide-base: [10;4r;4r;2r; 2r;r;7; 10]

o Wide-tip: [10;7;7;2r; 2r; 4r; 47; 10]
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Conclusion

tree structure

corresponds to ConvAC

open nodes =
correspond to ConvAC
inputs (e.g. pixels)

e Graph theoretic analysis of architectures

edge weights

correspond to ConvAC

layer widths

e Theory vs. practice w.r.t. distribution of channel sizes in real CNNs

e Even if theoretical model not exact: predictive and accurate?

See also Y. Levine, et al. arxiv 1803.09780.




The End



