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Motivation
Inductive bias: assumptions made about the class of target functions

○ We should incorporate our priors regarding desired task

● Full understanding of the inductive bias of existing networks (and the 
networks we want to design) is lacking.

For instance: CNN architecture has many design elements currently made ~ 
heuristically: number of layers, distribution of channels (this paper), pooling 
pattern, convolution kernel size and stride, …

● Contrast with e.g. “expressive efficiency.”

● (This talk is only about representation: no optimization.)



Tensor Preliminaries
Terminology:
● Each index of tensor is a mode, order of a tensor = number of modes

● Matricization of a tensor with respect to a partition:

● A rank-1 tensor is the tensor product of vectors:



Model: Convolutional Arithmetic Circuits (ConvAC)

A number of works by (overlapping) authors on convolutional arithmetic circuits.

● View them as “representative of the class of convolutional NNs.”

● Usual CNNs have pointwise nonlinearities following convolution and max or 
average pooling.

● ConvACs have linear activations and product pooling (the nonlinear part).
○ Because amenable to theoretical analysis.
○ (Even if different …. get testable predictions? → verify empirically.)



ConvAC Computation



Model: ConvAC 

Can be written in the following form:

(Will return to the decomposition of 
coefficients tensor)



Interpret ~ Quantum Wavefunction
General quantum state:

Consider the following product state:

Then: (With rank-1 coefficient tensor)

What we 
wanted: 
function 
computed by 
ConvAC



Why?

● “Entanglement measures as natural quantifiers of 
dependencies”

● In this domain, have a better understanding of how 
representation is tied to structure (of quantum states)

e.g. things like Schmidt number (rank of 
matricization) or entanglement entropy...

Specifically, we will import some (recently proven) results from the quantum side 
to inform a particular design choice: distribution of channel sizes in the network.



Aside: separation rank  
Measure distance from separability via notion of separation rank

Claim (see [1]):

[1]. Cohen & Shashua. arxiv 1605:06743, ICLR 2017.

Also ([1]): 



Recast ConvAC as a Tensor Network 

(Mainly semantic differences)
Delta function



Example of a Shallow ConvAC → TN

(Also known as a 
CP decomposition)



ConvAC/TN as a Graph
Important elements now: connectivity among individual tensors and the bond 
dimension on each edge
● Bond dimension = number of channels (feature maps)

We will analyze the cuts between 
input nodes (specifically, a 
partition into sets A, B).



A Definition



Bounds on Entanglement
Specifically, the Schmidt entanglement measure (importing a known bound).

Compare to classical 
min-cut/max-flow in a 
graph.

See e.g. S. Cui, et al. arxiv 1508.04644.



Quantum Min-Cut/Max-Flow

Why? Consider the following bipartition and ways of contracting the network:  

Leave the network with an 
inner (composite) index left 
uncontracted, so as to get 
a product of two matrices. 
Then because rank is 
limited by the inner 
dimension, we have an 
inequality.



Quantum Min-Cut/Max-Flow
General pooling case (window size > 2): need to adjust upper bound.

(In this case, delta tensor forces indices to be the same -- reduced dimensionality.)

Only count repeated edges 
from the Delta tensor once 
in the multiplicative cut 
weight.

(Note implication for a shallow network, which has global pooling.)



Bounds on Entanglement

See paper for a lower bound 
on rank of matricization 
(Schmidt rank).

For bounds to be useful, would like them to be tight.

Their simulations (Gaussian weights and channel # drawn from some set) 
show negligible deviations from the upper bound (min cut value).



Example

For shorter ranged correlations, channel distribution in lower layers matters.



Example



An Experiment

Task: 
64 x 64 binary MNIST in random positions.
“Local” task: digits resized to 8 x 8 (within 64 x 64).
“Global” task: resized to 32 x 32.

Architecture:
Two networks, only difference between them is channel ordering scheme.

First (representation) layer: 3 x 3 shared conv (with stride 1)
Followed by 6 hidden layers, each with 1 x 1 shared conv → ReLU → 2 x 2 
max pooling (with stride 2).
Final layer Y = 10 classes.



An Experiment



Conclusion

● Graph theoretic analysis of architectures
● Theory vs. practice w.r.t. distribution of channel sizes in real CNNs
● Even if theoretical model not exact: predictive and accurate?

See also Y. Levine, et al. arxiv 1803.09780.



The End


