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rectified polynomial energy function

F (x) =

⇢
xn, x � 0
0, x < 0

(3)

In the case of the polynomial function with n = 2 the network reduces to the standard model of
associative memory [1]. If n > 2 each term in (2) becomes sharper compared to the n = 2 case, thus
more memories can be packed into the same configuration space before cross-talk intervenes.

Having defined the energy function one can derive an iterative update rule that leads to decrease of
the energy. We use asynchronous updates flipping one unit at a time. The update rule is:
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The argument of the sign function is the difference of two energies. One, for the configuration with
all but the i-th units clumped to their current states and the i-th unit in the “off” state. The other one
for a similar configuration, but with the i-th unit in the “on” state. This rule means that the system
updates a unit, given the states of the rest of the network, in such a way that the energy of the entire
configuration decreases. For the case of polynomial energy function a very similar family of models
was considered in [11, 12, 13, 14, 15, 16]. The update rule in those models was based on the induced
magnetic fields, however, and not on the difference of energies. The two are slightly different due to
the presence of self-coupling terms. Throughout this paper we use energy-based update rules.

How many memories can model (4) store and reliably retrieve? Consider the case of random patterns,
so that each element of the memories is equal to ±1 with equal probability. Imagine that the system
is initialized in a state equal to one of the memories (pattern number µ). One can derive a stability
criterion, i.e. the upper bound on the number of memories such that the network stays in that initial
state. Define the energy difference between the initial state and the state with spin i flipped
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where the polynomial energy function is used. This quantity has a mean h�Ei = Nn � (N � 2)n ⇡
2nNn�1, which comes from the term with ⌫ = µ, and a variance (in the limit of large N )

⌃2 = ⌦n(K � 1)Nn�1, where ⌦n = 4n2(2n � 3)!!

The i-th bit becomes unstable when the magnitude of the fluctuation exceeds the energy gap h�Ei
and the sign of the fluctuation is opposite to the sign of the energy gap. Thus the probability that the
state of a single neuron is unstable (in the limit when both N and K are large, so that the noise is
effectively gaussian) is equal to
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Requiring that this probability is less than a small value, say 0.5%, one can find the upper limit on
the number of patterns that the network can store

Kmax = ↵nNn�1, (5)
where ↵n is a numerical constant, which depends on the (arbitrary) threshold 0.5%. The case
n = 2 corresponds to the standard model of associative memory and gives the well known result
K = 0.14N . For the perfect recovery of a memory (Perror < 1/N ) one obtains

Kmax
no errors ⇡ 1
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For higher powers n the capacity rapidly grows with N in a non-linear way, allowing the network
to store and reliably retrieve many more patterns than the number of neurons that it has, in accord1

with [13, 14, 15, 16]. This non-linear scaling relationship between the capacity and the size of the
network is the phenomenon that we exploit.

1The n-dependent coefficient in (6) depends on the exact form of the Hamiltonian and the update rule.
References [13, 14, 15] do not allow repeated indices in the products over neurons in the energy function,
therefore obtain a different coefficient. In [16] the Hamiltonian coincides with ours, but the update rule is
different, which, however, results in exactly the same coefficient as in (6).
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capacity, allowing it to perform only one update of the classification neurons. The network is
initialized in the state when the visible units vi are clamped to the intensities of a given image and the
classification neurons are in the off state x↵ = �1 (see Fig.1A). The network is allowed to make
one update of the classification neurons, while keeping the visible units clamped, to produce the
output c↵. The update rule is similar to (4) except that the sign is replaced by the continuous function
g(x) = tanh(x)

c↵ = g
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where parameter � regulates the slope of g(x). The proposed digit class is given by the number
of a classification neuron producing the maximal output. Throughout this section the rectified
polynomials (3) are used as functions F . To learn effective memories for use in pattern classification,
an objective function is defined (see Appendix A in Supplemental), which penalizes the discrepancy
A B
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Figure 1: (A) The network has N = 28 ⇥ 28 = 784 visible neurons and Nc = 10 classification neurons.
The visible units are clamped to intensities of pixels (which is mapped on the segment [�1, 1]), while the
classification neurons are initialized in the state x↵ and then updated once to the state c↵. (B) Behavior of the
error on the test set as training progresses. Each curve corresponds to a different combination of hyperparameters
from the optimal window, which was determined on the validation set. The arrows show the first time when the
error falls below a 2% threshold. All models have K = 2000 memories (hidden units).

between the output c↵ and the target output. This objective function is then minimized using a
backpropagation algorithm. The learning starts with random memories drawn from a Gaussian
distribution. The backpropagation algorithm then finds a collection of K memories ⇠µ

i,↵, which
minimize the classification error on the training set. The memories are normalized to stay within the
�1  ⇠µ

i,↵  1 range, absorbing their overall scale into the definition of the parameter �.

The performance of the proposed classification framework is studied as a function of the power n.
The next section shows that a rectified polynomial of power n in the energy function is equivalent
to the rectified polynomial of power n � 1 used as an activation function in a feedforward neural
network with one hidden layer of neurons. Currently, the most common choice of activation functions
for training deep neural networks is the ReLU, which in our language corresponds to n = 2 for
the energy function. Although not currently used to train deep networks, the case n = 3 would
correspond to a rectified parabola as an activation function. We start by comparing the performances
of the dense memories in these two cases.

The performance of the network depends on n and on the remaining hyperparameters, thus the hyper-
parameters should be optimized for each value of n. In order to test the variability of performances
for various choices of hyperparameters at a given n, a window of hyperparameters for which the
network works well on the validation set (see the Appendix A in Supplemental) was determined.
Then many networks were trained for various choices of the hyperparameters from this window to
evaluate the performance on the test set. The test errors as training progresses are shown in Fig.1B.
While there is substantial variability among these samples, on average the cluster of trajectories for
n = 3 achieves better results on the test set than that for n = 2. These error rates should be compared
with error rates for backpropagation alone without the use of generative pretraining, various kinds
of regularizations (for example dropout) or adversarial training, all of which could be added to our
construction if necessary. In this class of models the best published results are all2 in the 1.6% range
[18], see also controls in [19, 20]. This agrees with our results for n = 2. The n = 3 case does
slightly better than that as is clear from Fig.1B, with all the samples performing better than 1.6%.

2Although there are better results on pixel permutation invariant task, see for example [19, 20, 21, 22].
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Features vs. prototypes in psychology 
and neuroscience

manner and for the same duration as during the training
phase. Participants were now required to indicate whether
the face appeared to be “old” or “new” by means of a key
press.

Results and discussion

The experiment requires remembering a large series of
faces, and the first analysis examined how well subjects
performed overall. The binary nature of the familiar/
unfamiliar decision task lends the data to analysis using
signal detection techniques. d-prime was calculated as a
function of distance from the prototype. The results
appear in Figure 4. A repeated measures ANOVA was
then conducted with distance from the prototype as
independent variable and d-prime score as dependent
variable. ANOVA revealed a significant effect of distance,
F(3,57), MSE = 0.595, F = 9.73, pG 0.001, corresponding
to better performance as distance from the prototype
increased. Despite this trend, performance was still
significantly above chance for faces differing by only
one facial region from the prototype (and hence two from
each other): F(1,19), MSE = 0.4495, F = 30.84, pG 0.001,
indicating that subjects were able to distinguish familiar
from unfamiliar faces under all four stimulus distance
conditions.
Although the preceding result is encouraging, it says

nothing to the major hypotheses being tested. Since the
prototype was never shown during training, d-prime
cannot be established for this condition. Instead, a further
analysis was conducted based upon average response rates

Figure 3. Example of the stimuli used in the experiments. The
prototype-centered face array is divided into familiar faces seen
during training and unfamiliar ones seen only during testing. Each
face is an amalgam of four facial regions located around the eyes,
nose, mouth, and surround. The central face is the prototype. It
has a specific number of facial parts in common with the
surrounding faces. This number decreases as a function of
distance from the prototype, as indicated by the digits (1–4)
placed on the concentric rings. A total of 35 heads were required
to build each face array.

Figure 2. (A) The stimuli were generated from a set of 3D head models that include separate texture and form information. (B) Four
subregions were identified within each head, centered on the eyes, nose, mouth, and surround. Subregions selected from the heads of
four individuals were morphed together to build hybrid head shapes. (C) These morphed heads were rendered in seven equally spaced
orientations. During training and testing, preselected morphed heads were presented in rapid succession (300 ms per frame), providing
the impression of a head rotating from one extreme profile to the other.
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Hubel,Wiesel, 1959
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Feature to prototype transition
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Duality with feed-forward nets

f(x) = F 0(x)

Duality rule:

energy 
function

activation 
function
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Commonly used activation functions

xx

f(x) = ReLU f(x) = RePn�1

n = 2 n

standard  
Hopfield net

DAM



Question:  
Are there any tasks for 

which models with higher 
order interactions perform 

better than models with 
quadratic interactions?
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Question:  
Can we use Dense 

Associative Memories 
for classification of high 

resolution images? 



7UDQVIHU�/HDUQLQJ�ZLWK�9**���&11

1RYHO�$FWLYDWLRQ�)XQFWLRQV�
5H/8 5H3

VGG16 coupled to DAM
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Input transfer
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n=2 100% 32%
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98.9% 50.7% 9.07% 3.44%

33.9% 99% 8.71% 3.32%

45.3% 63.7% 98.9% 5.77%

37.6% 48.3% 56.9% 98.8%

test errorn=2 = 1.51%

test errorn=3 = 1.44%

test errorn=20 = 1.61%

test errorn=30 = 1.80%

clean MNIST test set:

Figure 5: Transfer table of adversarial examples. The MNIST test set was used to construct four test sets of

adversarial images, poised one step behind the decision boundary, for n = 2, 3, 20, 30. These four datasets were

cross-classified by the same four models. Each dataset has 10000 images. The number at the intersection of the

i-th row and the j-th column is the error rate of the j-th model on the adversarial dataset constructed using the

i-th model. On the right the error rates of the four models on the original MNIST test set.

of the datasets3. The most important aspect of this table is that the adversarial images generated
by models with n = 2 and n = 3 do not transfer to the model with n = 30. These images
share semantic similarity with the clean image that was used as an initial seed for crafting them,
but do not generally have semantic features of the target class of the deformation. The model
with n = 30 can detect this similarity with the initial image and can still correctly classify 97%
of these cases. In contrast the adversarial images crafted using the model with n = 30 can be
transferred to models with n = 2, 3. However, as we argued in the previous section this is expected
since these images share semantic similarities with both the initial seed and the target class of
the deformation. Thus, any machine learning algorithm or a human subject should misclassify a
substantial fraction of them.

In the second experiment an artificial dataset was created, so that data correspond to the
minima of the 10 objective functions C↵. For each sample a random noise image was generated
from a gaussian distribution, which was then iteratively changed in the direction of the negative
gradient according to (5) until convergence. The dataset has 100 images of each label class, 1000
images in total. This procedure was repeated for each value of n = 2, 3, 20, 30. The resulting
four datasets were used for cross-classification by the same four models. The results are shown in
Fig.6, but to discuss them we need to first introduce the notion of confidence.

Confidence

The output of the network (1) is a collection of Nc numbers �1  Y↵  1. For the following
discussion it is convenient to define a measure of confidence that the neural network has in making
a classification decision. If the actual outputs Y↵ are approximately equal to the target output,

3
The reason why the error rate is around 99% instead of 100% is because the classification error on the clean

dataset is about 1.5%, and in about 1% of the cases the second choice of the network is the correct answer. Thus in

these rare cases the adversarial deformation used to generate the dataset actually turns the incorrect answer into

the correct one.
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Results on ImageNet
Accuracy: 69%



ImageNet errors

police van, police wagon, 
paddy wagon, patrol wagon, 

wagon, black Maria bell cote, bell cot
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