
Three Factors Influencing 
Minima in SGD

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, 

Asja Fischer, Yoshua Bengio, Amos Storkey 


HEP-AI Journal Club, January 2018




The generalization puzzle
• Deep models are highly over-parameterized


• ImageNet: 10^7 training samples vs. 10^8 parameters (VGG)


• Yet they often generalize well (do not completely overfit). Why?


• Gradient descent?


• Noise in gradient estimation of SGD?


• Good priors built into the architecture? (‘inductive bias’)


• Smaller-than-expected capacity?



Deep models have large 
capacity

• Zhang et al. (1611.03530) showed that typical models can 
typically memorize all training samples


• Training labels are randomized


• Deep models can still memorize the training samples 
(reach 100% training accuracy)


• (But not generalize)


• Classical measures of capacity (Rademacher complexity) 
are probably not useful for explaining generalization



Generalization and flatness
• There is evidence that flat minima generalize better than 

sharp minima. Possible intuition:

[1609.0836]



Stochastic gradient descent 
and flatness

• In SGD we estimate the gradient by sampling mini-
batches from training set


• Introduces noise (variance) into the gradient


• Noisy gradients favor flat minima


• So it seems that noisy SGD improves generalization



Batch size and flatness
• Small batch <-> noisy gradient


• Interpolate loss between small/large-batch minima

[1609.0836]

L(↵) = L(↵✓large�batch
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Three Factors Influencing 
Minima in SGD

• Take continuum limit of SGD


• Compute equilibrium distribution of learned weights


• Show that SGD favors deeper, wider minima


• Higher noise makes probabilities of deep / shallow 
minima closer

batch size
learning rate=

Three factors: learning rate, batch size, gradient variance



Three Factors Influencing 
Minima in SGD

• Continuum limit of SGD gives Langevin equation 
 

• Describes stochastic dynamics of a single training run


• Fokker-Planck equation describes evolution of distribution


• Equilibrium solution is Boltzmann distribution

batch size
learning rate

=



SGD dynamics in 
continuum limit

Central limit theorem (large N, large batch size)

Continuum limit is Langevin equation

hf(t)i = 0 hf(t)f(t0)i = �(t� t0)

Noise term correlations

learning rate should be 

different though…



Fokker-Planck equation
Continuum limit is Langevin equation

hf(t)i = 0 hf(t)f(t0)i = �(t� t0)

Noise term correlations



Fokker-Planck equation (1d)
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Expand the delta function, use noise correlations hf(t)f(t0)i = �2�(t� t0)

Langevin
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Equilibrium distribution

Stationary solutions

@tP = 0

@tP +r · J = 0 , �J = ⌘gP +
⌘2

2S
r · (CP )

Assume constant isotropic noise:

Stationary solutions only depend on �2⌘

S

Equilibrium solutions (detailed balance): J = 0



Equilibrium distribution
Equilibrium solution is Boltzmann

J = 0

batch size
learning rate

=noise coefficient:



Flat vs. sharp minima



Experimental evidence

n =
⌘
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Experimental evidence

n =
⌘

S

Are they assuming 
sharper minima have 
smaller loss? Why?



Questions

• Momentum? (they comment on it but don’t have 
conclusions)


• Natural gradient?


• More realistic covariance matrices for the noise?


• Why equilibrium and not just stationary solutions?




