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The generalization puzzle

e Deep models are highly over-parameterized
* ImageNet: 10A7 training samples vs. 10A8 parameters (VGQG)
* Yet they often generalize well (do not completely overfit). Why?
e Gradient descent?
 Noise in gradient estimation of SGD?
 Good priors built into the architecture? (‘inductive bias’)

 Smaller-than-expected capacity?



Deep models have large
capacity

e Zhang et al. (1611.03530) showed that typical models can
typically memorize all training samples

* Training labels are randomized

* Deep models can still memorize the training samples
(reach 100% training accuracy)

e (But not generalize)

e (Classical measures of capacity (Rademacher complexity)
are probably not useful for explaining generalization



Generalization and flathess

 There is evidence that flat minima generalize better than
sharp minima. Possible intuition:
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Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss

function and the X-axis the variables (parameters)
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Stochastic gradient descent
and flatness

e In SGD we estimate the gradient by sampling mini-
batches from training set

e Introduces noise (variance) into the gradient
 Noisy gradients favor flat minima

S0 it seems that noisy SGD improves generalization



Cross Entropy

Batch size and flathess

 Small batch <-> noisy gradient

e Interpolate loss between small/large-batch minima
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Three Factors Influencing
Minima in SGD

e Take continuum limit of SGD
e Compute equilibrium distribution of learned weights
e Show that SGD favors deeper, wider minima

e Higher noise makes probabilities of deep / shallow
minima closer
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Three factors: learning rate, batch size, gradient variance
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Three Factors Influencing
Minima in SGD

Continuum limit of SGD gives Langevin equation
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Describes stochastic dynamics of a single training run

Fokker-Planck equation describes evolution of distribution
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Equilibrium solution is Boltzmann distribution
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SGD dynamics in
continuum limit
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Continuum limit is Langevin equation
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Noise term correlations
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Fokker-Planck equation

Continuum limit is Langevin equation
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Noise term correlations
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Fokker-Planck equation (1d)
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Expand the delta function, use noise correlations  (f(¢) f(t))) = o?6(t — t')
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Drift term Diffusion term




Equilibrium distribution
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Stationary solutions
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Assume constant isotropic noise: C(O) = 021 |
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Equilibrium solutions (detailed balance): .J = ()



Equilibrium distribution

Equilibrium solution is Boltzmann
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: .. B learning rate
noise coefficient: N — S =
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Flat vs. sharp minima
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Experimental evidence

CIFAR10 (Resnet56): n/S=0.1/128, n/S=0.1/1024 CIFAR10 (Resnet56): n/S =0.1/128, n/S=0.01/128 CIFAR10 (Resnet56): n/S=0.1/1024, n/5=0.01/128
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Experimental evidence
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Each experiment is run for 200 epochs; most models reach approximately 100% accuracy on train
set. As n grows, we observe that the norm of the Hessian at the minima also decreases, suggesting
that higher % pushes the optimization towards flatter minima. This agrees with Theorem 2, Eq. (3),
that hlgher 5 favors flatter over sharper minima.

1 2L 4 M Are they assuming
DA = exp 5 n — — sharper minima have
vdet H 4 no S smaller loss? Why?




Questions

Momentum? (they comment on it but don’t have
conclusions)

Natural gradient?
More realistic covariance matrices for the noise?

Why equilibrium and not just stationary solutions?






