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Big bold claim

Deep neural networks are  
quantum field theories,  

and they learn by  
spontaneous symmetry breaking



My interpretation
Some very special (possibly only linear) Deep neural 

networks are have an EFT description as 
quantum statistical/thermal field theories,  

and they learn by with a particular learning rate 
schedule one could possibly observe some form of 

spontaneous symmetry breaking



Not the only one…

However, 
there are  
germs of 

good ideas, 
so let’s see 
where they 

lead



Compact description of DNN’s

yt =

 
t�1Y

n=0
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Output 
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Weights/biases 
(affine matrix)Activation 

(generally nonlinear)

If R = 1 this is a linear network



Symmetries
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If [R,Q] = 0, single layer is covariant:
y ! RQWQ�1Qx = Qy

However…
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what the hell 
is this thing?



Lagrangian description
Given N training input/output pairs zi = (Xi,Yi)

Average loss:

Continuum limit:

L =
1

N

NX

i=1

Li(Xi,Yi,W,Q)

why are symmetry 
transformations  

explicitly included?

L =

Z
p(X,Y)LX(X,Y,W,Q)dX dY

write as loss per layer as number of layers t ! 1

LX = LX(t = 0) +

Z T

0

dLX(X,Y,W(t), Q(t))

dt
dt

value of loss before training (??) can a general loss function 
be split up layer-by-layer like this?

Assumption:        invariant under Q LX,t
Concrete example? 

None given in this paper…



Lagrangian description
S[W, Q] =

Z
p(X,Y)LX,t(X,Y,W(t), Q(t))dX dY dt

Claim: minimizing LX,t minimizes LX. 
Let W* be minimizer, shift weights to minimum: 

why are weights a function of input/output?
wi(z, Q(t), t) = R(t)W i(z, Q(t), t)�R(t)W ⇤i(z, Q(t), t)

Define Lagrangian in terms of these shifted weights:

This seemed like a ruse to end up with a Lagrangian 
with loss as potential. Is there a better-motivated way 

to add kinetic terms?

L = T [@tw, @
z

w, Q(t)]� p(z)L
x,t(z,W(t), Q(t))



If symmetry group is O(N):
EFT is phi4 model:

L =
1

2
(@tw)

2 � 1

2
(@zw)

2 � m2

2
w2 � �

4
(w2)2

Claim: “to account for the effect of the learning rate, we  
employ results from thermal field theory and identify the 

temperature with the learning rate”

m2(⌘) = �µ2 +
1

4
�⌘2

This is probably BS, but something like this seems true. 
(why does learning rate have dimension 1? would be good to 

develop a power-counting scheme)

what loss function/network architecture has O(N) invariance?



Claim: SSB occurs at end of 
training

“Proof”:

Published as a conference paper at ICLR 2015

Figure 19: The same as Fig. 18, but zoomed in to show detail near the end of learning.

in time

✓(t) ⇡ ✓(0)� t

d

dt

✓(t) +
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dt
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it simplifies to

✓(t) ⇡ ✓(0)� tr✓(0)J(✓(0)) +
1

2
t

2H(0)r✓(0)J(✓(0))

where H is the Hessian matrix of J(✓(0)) with respect to ✓(0). This view shows that a second-order
approximation in time of continuous-time gradient descent incorporates second-order information
in space via the Hessian matrix. Specifically, the second-order term of the Taylor series expansion
is equivalent to ascending the gradient of ||r✓J(✓)||2. In other words, the first-order term says
to go downhill, while the second-order term says to make the gradient get bigger. The latter term
encourages SGD to exploit directions of negative curvature.

D CONTROL VISUALIZATIONS

Visualization has not typically been used as a tool for understanding the structure of neural net-
work objective functions. This is mostly because neural network objective functions are very high-
dimensional and visualizations are by necessity fairly low dimensional. In this section, we include a
few “control” visualizations as a reminder of the need to interpret any low-dimensional visualization
carefully.

Most of our visualizations showed rich structure in the cost function and a relatively simple shape
in the SGD trajectory. It’s important to remember that our 3-D visualizations are not showing a
2-D linear subspace. Instead, they are showing multiply 1-D subspaces rotated to be parallel to
each other. Our particular choice of subspaces was intended to capture a lot of variation in the cost
function, and as a side effect it discards all variation in a high-dimensional trajectory, reducing most
trajectories to semi-circles. If as a control we instead plot a randomly selected 2-D linear subspace
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looks like

[Goodfellow, 1412.6544]

Under review as a conference paper at ICLR 2018

Figure 1: The characteristics of the loss rate with spontaneous symmetry breaking. The dashed line
corresponds to the symmetric phase, while the solid line corresponds to the broken phase. Only at
w = 0 the reflection symmetry w(Q) = ±w is respected. Here, w = �.

3 SYMMETRIES IN NEURAL NETWORKS

In this section we show that spontaneous symmetry breaking occurs in neural networks. First, we
show that learning by deep neural networks can be considered solely as breaking the symmetries in
the weights. Then we show that some non-linear layers can preserve symmetries across the non-
linear layers. Then we show that weight pairs in adjacent layers, but not within the same layer, is
approximately an invariant under the remnant symmetry leftover by the non-linearities. We assume
that the weights are scalar fields invariant under the affine Aff(D0) group for some D0 and find that
experimental results show that deep neural networks undergo spontaneous symmetry breaking.

Theorem 1: Deep feedforward networks learn by breaking symmetries Proof: Let A
i

be an
operator representing any sequence of layers, and let a network formed by applying A

i

repeatedly
such that x

out

= (

Q
M

i=1 Ai

)x
in

. Suppose that A
i

2 Aff(D), the symmetry group of all affine
transformations. We have L =

Q
D

i=1 Ai

, where L 2 Aff(D). Then x
out

= Lx
in

for some L 2
Aff(D) and x

out

can be computed by a single affine transformation L. When A
i

contains a non-
linearity for some i, this symmetry is explicitly broken by the nonlinearity and the layers learn a
more generalized representation of the input. ⇤
Now we show that ReLU preserves some continuous symmetries.

Theorem 2: ReLU reduces the symmetry of an Aff(D) invariant to some subgroup Aff(D0
),

where D0 < D. Proof: Suppose R denotes the ReLU operator with output y
t

and Q
t

2 Aff(D)
acts on the input x

t

, where R(x) = max(0,x). Let xT

x be an invariant under Aff(D) and let
x

T

= (�, ⌫), ⌫ < 0 and � > 0. Let a = Rx = (�, 0). Then a

T

a = x

TRRx = �T �. Then a

T

a

is an invariant under Aff(D0) where D0
= dim �. Note that �i can be transformed into a negative

value as it has passed the ReLU already. ⇤

Corollary If there exists a group G that commutes with a nonlinear operator R, such that QR =

RQ, for all Q 2 G, then R preserves the symmetry G.

6

Not especially convincing

Can we calculate       from first principles given the loss?⌘c

Does this phenomenon really require a schedule for 
the learning rate? DNN’s seem to work even with 

vanilla gradient descent…



From here, a lot of 
pretentious garbage

Under review as a conference paper at ICLR 2018

Figure 1: The characteristics of the loss rate with spontaneous symmetry breaking. The dashed line
corresponds to the symmetric phase, while the solid line corresponds to the broken phase. Only at
w = 0 the reflection symmetry w(Q) = ±w is respected. Here, w = �.
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not SSB…

Under review as a conference paper at ICLR 2018

Definition: Remnant Symmetry If Q
t

2 G commutes with a non-linear operator R
t

for all Q
t

,
then G is a remnant symmetry at layer t.

For the loss function L
i

(X

i

,Y
i

,W,Q) to be invariant, we need the predicted output y
T

to be
covariant with x

i

. Similarly for an invariant loss rate L
x,t

we require y

t

to be covariant with x

t

.
The following theorem shows that a pair of weights in adjacent layers can be considered an invariant
for power series expansion.

Theorem 3: Neural network weights in adjacent layers form an approximate invariant Sup-
pose a neural network consists of affine layers followed by a continuous non-linearity, R

t

, and that
the weights at layer t, W

t

(Q
t

) = Q
t

W

t

Q�1
t

, and that Q
t

2 H is a remnant symmetry such that
Q

t

R
t

= R
t

Q
t

. Then w

t

w

t�1 can be considered as an invariant for the loss rate.

Proof: Consider x(Q
t

) = Q
t

x

t

, then

y

t

(Q
t

) = R
t

W

t

(Q
t

)x

t

(Q
t

)

= R
t

Q
t

W

t

Q�1
t

Q
t

x

t

= R
t

Q
t

W

t

x

t

= Q
t

R
t

W

t

x

t

,

where in the last line Q
t

R
t

= R
t

Q
t

was used, so y

t

(Q
t

) = Q
t

y

t

is covariant with x

t

. Now,
x

t

= R
t�1Wt�1xt�1, so that

y

t

(Q
t

) = Q
t

R
t

W

t

R
t�1Wt�1xt�1.

The pair (R
t

W

t

)(R
t�1Wt�1) can be considered an invariant under the ramnant symmetry at layer

t. Let w
t

= R
t

W

t

�R
t

W

⇤
t

. Therefore w

t

w

t�1 is an invariant. ⇤
In the continuous layer limit, w

t

w

t�1 tends to w(t)Tw(t) such that w(t) is the first layer and
w(t)T corresponds to the one after. Therefore w(t) can be considered as D0 scalar fields under the
remnant symmetry. The remnant symmetry is not exact in general. For sigmoid functions it is only
an approximation. The crucial feature for the remnant symmetry is that it is continuous so that strong
correlation between inputs and outputs can be generated from spontaneous symmetry breaking. In
the following we will only consider exact remnant symmetries. We will state the Goldstone Theorem
from field theory without proof.

Theorem (Goldstone) For every spontaneously broken continuous symmetry, there exist a weight
⇡ with zero eigenvalue in the Hessian m2

⇡

= 0. ⇤
In any case, we will adhere to the case where the remnant symmetry is an orthogonal group O(D0

).
Note that W is a D ⇥D matrix and D0 < D. We choose a subset � 2 RD

0
of W such that �T

�

is invariant under Aff(D0
). Now that we have an invariant, we can write down the Lagrangian for a

deep feedforward network for the weights responsible for spontaneous symmetry breaking.

The Lagrangian for deep feedforward networks in the decoupling limit Let �i

= R(�

i

) �
R(�

⇤i
),

L =

1

2

(@
t

�i

)

2 � 1

2

(@
z

�i

)

2 � m2
(⌘)

2

�i�
i

� �

4

(�i�
i

)

2. (3)

Now we can use standard field theory results and apply it to deep neural networks. A review for
field theory is given in Appendix B. The formalism for spontaneous symmetry breaking is given in
Appendix C.

4 MAIN RESULTS

In this section we assume that the non-linear operator is a piecewise linear function such as ReLU
and set R = I to be the identity and restrict our attention to the symmetry preserving part of R (see
theorem 2). Our discussion also applies to other piecewise-linear activation functions. According
to the Goldstone theorem, spontaneous symmetry breaking splits the set of weight deviations � into
two sets (�,⇡) with different behaviors. Weights ⇡ with zero eigenvalues and a spectrum dominated
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etc. etc.



Provocative statement: information 
bottleneck is due to SSB

• Observation: variance of weight gradients grows at 
end of training 

• Claim: this is due to considering two populations of 
weights, Higgs modes and Goldstone modes, as 
the same distribution 

• Obvious thing to check: correlation functions of 
weights



Goldstone weights and 
overfitting

• Claim: zero-eigenvalue weights are robust to 
overfitting, related to “implicit 
regularization” [Zhang 1611.03530] 

• Seems weird, would have thought you want to gap 
out the Goldstone modes otherwise they can just 
slosh around in the potential without changing loss 
value

Is there any evidence that real DNN’s have degenerate 
loss minima? What is the role of stochasticity?



Is this a  
quantum field theory?

No. But trying to model a network during training as 
a statistical/thermal field theory (e.g. Landau-Ginzburg) 

seems like an idea worth pursuing.



Good ideas that need 
fleshing out

• Adding a kinetic term to the loss function to get a 
Lagrangian (penalty for weights changing too fast 
between layers?) 

• EFT of weights near loss minimum 

• Identify learning rate with thermal potential 

• If network has O(N) symmetry, EFT is a phi4 model 
with SSB 

• If SSB, some weights are goldstone modes



Questions for us

• What aspects of this seem most promising? 

• Who wants to do some numerical experiments?


