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Big bold claim

Deep neural networks are
guantum field theories,
and they learn by
spontaneous symmetry breaking



My Interpretation

Some very special (possibly only linea

networks ate have an
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') Deep neural

potion as

guartum statistical/thermal field theories,

and theyHdearnby with a particular learning rate
schedule one could possibly observe some form of

spontaneous symmetry breaking




Not the only one

Difficult to parse
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Ratind:
Review: The-paper makes amattif€matical analogy between deep neural networks and quantum field theory, and claims that this explains a large 'l: h e re a re
number of empirically observed phenomena.

uses mathematics in a very loose manner. This is not always bad (an overly formal treatment can make a paper hard to read), but in this case it is not

I have a solid grasp of the relevant mathematics, and a superficial understanding of QFT, but I could not really make sense of this paper. The paper g e r m S Of
clear to me that the results are even "correct modulo technicalities" or have much to do with the reality of what goes on in deep nets.

good ideas,
Do we really need quantum field theory? SO | et ,S See
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Ratfhg: 3: Clear rejectlon y

Reviéws. In this paper, an numbe

of very strong (even extraordinary) claims are made:

* The abstract promises "a framework to understand the unprecedented performance and robustness of deep neural networks using field theory." | e a d
* Page 8 states that this is "This is a first attempt to describe a neural network with a scalar quantum field theory."

* Page 2 promises the use of the "Goldstone theorem" (no less) to understand phase transition in deep learning

* It also claim that many "seemingly different experimental results can be explained by the presence of these zero eigenvalue weights."

* Three important results are stated as "theorem", with a statement like "Deep feedforward networks learn by breaking symmetries" proven in 5 lines,

with no formal mathematics.

These are extraordinary claims, but when reaching page 5, one sees that the basis of these claims seems to be the Lagrangian of a simple phi-4
theory, and Fig. 1 shows the standard behaviour of the so-called mexican hat in physics, the basis of the second-order transition. Given physicists have
been working on neural network for more than three or four decades, I am surprise that this would enough to solve all these problems!



Compact description of DNN'’s

/! n=~0 / \
Qutput | | Inout
(layer t) Weights/biases

Activation (affine matrix)
(generally nonlinear)

If R = 1 this is a linear network



Symmetries

t—1
Yt = H Ri—nWi_p | X1
n=0
X1 — Q1X1
W; — Q:W,Q;
If [R,Q] = 0, single layer is covariant:

y = RQWQ'Qx = Qy

However... what the hell
s this thing”

t—1
Yt(Qt) — (H Rthththtln) lel
n=0



| agrangian description

Given N training input/output pairs z; = (X;,Y))
why are symmetry

/ transformations
Average loss: L = — ZL (X, Yi, W, Q) explicitly included?
1=1

Continuum limit: L = /p(X,Y)LX(X,Y,W,Q)dXdY

/

write as loss per layer as number of layers ¢ — oc
T
dLx(X,Y, W(t t
LX:LX(t:O)+/ x(X, Y, ()’Q())dt
/ 0 dt \
can a general loss function
be split up layer-by-layer like this?

EAssumption: Lx . Invariant under QJ Concrete example?
, None given in this paper...

value of loss before training (7?)




| agrangian description

SIW. Q] = / (X, Y) Lx (X, Y, W(t), Q(t))dX dY dt

Claim: minimizing Lx:minimizes Lx.
Let W* be minimizer, shift weights to minimum:

w'(z, Q(1),t) = R()W'(2,Q(t),t) — R(t)W ™ (2,Q(1), 1)

why are weights a function of input/output?

Detine Lagrangian in terms of these shifted weights:

L="T|Ow,0,w,Q(t)] —p(z)Lx+(z, W(t),Q(t))

This seemed like a ruse to end up with a Lagrangian
with loss as potential. Is there a better-motivated way
to add kinetic terms”



[t symmetry group is O(N):

what loss function/network architecture has O(N) invariance?

EFT is phi4 model;

1 1 : A
£ =5 (0hw)? = 5(9,w)” %wQ - Sw?)?
Claim: “to account for the effect of the learning rate, we
employ results from thermal tield theory and identity the

temperature with the learning rate”

m*(n) = —p” + EMQ
This is probably BS, but something like this seems true.
(why does learning rate have dimension 17 would be good to
develop a power-counting scheme)



Claim: SSB occurs at end of
training

"Proof™: l00ks like

[Goodfellow, 1412.6544]
Not especially convincing

Can we calculate 7le from first principles given the loss”

Does this phenomenon really require a schedule for
the learning rate” DNN'’s seem to work even with
vanilla gradient descent...



From here, a ot of
oretentious garbage

Theorem 1: Deep feedforward networks learn by breaking symmetries Proof: Let A; be an
operator representing any sequence of layers, and let a network formed by applying A; repeatedly

such that z,,; = (H,‘Z\il A;)xin. Suppose that A; € Aff(D), the symmetry group of all affine

transformations. We have L = H£1 A;, where L € Aff(D). Then x,,; = Lx;, for some L €

Aff(D) and x,,: can be computed by a single affine transformation L. When A; contains a non-
linearity for some i, this symmetry is _explicitly broken by the nonlinearity and the layers learn a
more generalized representation of the input. []

not SSB.....

Theorem (Goldstone) For every spontaneously broken continuous symmetry, there exist a weight
7 with zero eigenvalue in the Hessian m2 = 0. OJ

elc. etc.



Provocative statement: information
bottleneck I1s due to SSB

* Observation: variance of weight gradients grows at
end of training

* Claim: this is due to considering two populations of
weights, Higgs modes and Goldstone modes, as
the same distribution

* Obvious thing to check: correlation functions of
welights



Goldstone weights and
overfitting

* Claim: zero-eigenvalue weights are robust to
overfitting, related to “implicit
regularization” [Zhang 1611.03530]

* Seems weird, would have thought you want to gap
out the Goldstone modes otherwise they can just
slosh around in the potential without changing loss
value

|s there any evidence that real DNN's have degenerate
loss minima”? What is the role of stochasticity”?



s this a
gquantum field theory?

No. But trying to model a network during training as
a statistical/thermal tield theory (e.g. Landau-Ginzburg)
seems like an idea worth pursuing.



Good Ideas that need
fleshing out

Adding a kinetic term to the loss function to get a
Lagrangian (penalty for weights changing too fast
between layers?)

EFT of weights near loss minimum

|dentify learning rate with thermal potential

If network has O(N) symmetry, EFT is a phi4 model
with SSB

It SSB, some weights are goldstone modes



Questions for us

* What aspects of this seem most promising?

 Who wants to do some numerical experiments?



