Capsule Networks

Eric Mintun

Motivation

- An improvement* to regular Convolutional Neural Networks.
- Two goals:
 - Replace max-pooling operation with something more intuitive.
 - Keep more info about an activated feature.
- Not new, but recent interest because of state-of-the-art results in image segmentation and 3D object recognition.

*Your milage may vary

CNN Review

- CNN architecture bakes in translation invariance.
 - Convolution looks for same feature at each pixel.
 - Max-pooling throws out location information.

CNN Issues

- Only involves position of feature, not orientation.
- Translation is a linear transform, but CNN doesn't represent this.
- Grid representation inefficient when features are rare.
- Intermediate translation invariance is bad.

Capsules

- Capsules have two steps:
- Apply pose transform between all lower capsules and upper capsules:

 $\hat{u}_{ij} = W_{ij}\vec{u}_i$

- Transformation matrices learned by back propagation.
- Route lower level capsules to higher level capsules:

$$v_j = \sum_i c_{ij} \hat{u}_{ij} , \qquad \sum_i c_{ij} = 1$$

- Weights determined dynamically.
- Activations factor into this step.

Pose Transformations

• W_{ij} : given pose of feature *i*, what is predicted pose of higher level feature *j*?

 W_{11} : rotate 135° CCW, rescale by 1, translate (0,-1). W_{12} : rotate 45° CCW, rescale by 2, translate (0,-4).

Routing

- c_{ij} : which feature *j* does feature *i* think it is a part of.
- Determined via "routing by agreement": if many features i predict the same pose for feature j, it is more likely j is the correct higher level feature.

Increase c_{11} , decrease c_{12} .

Specific Models

- Two separate papers give different explicit models.
- Model 1, from "Dynamic Routing Between Capsules", Sabour, Frosst, Hinton, 1710.09829)
 - State-of-the-art image segmentation
 - Few capsule layers
 - Generic poses with simple routing
- Model 2, from "Matrix capsules with EM routing," anonymous authors, <u>openreview.net/</u> <u>pdf?id=HJWLfGWRb</u>
 - State-of-the-art 3D object recognition
 - More capsule layers
 - Structured poses with more advanced routing

Model 1

• From "Dynamic Routing Between Capsules", Sabour, Frosst, Hinton, 1710.09829

- Get pixels into capsule poses using convolutions and backprop.
- ReLU between convolutions. Second convolution has stride 2.

Primary Capsules

- Cool visual description of primary capsules in Aurélien Géron's "How to implement CapsNets using TensorFlow" (<u>youtube.com/watch?</u> <u>v=2Kawrd5szHE</u>)
- One class detects line beginnings where pose is line direction:

Input*

*background gradient not part of input, but is because I took a screenshot of a youtube video. Primary capsule activation

Routing

 No separate activation probability, stored in length of pose vector. Squash pose vector to [0,1]:

$$\vec{s}_j = \sum_i c_{ij} \hat{u}_{ij} \qquad \qquad \vec{v}_j = \frac{||\vec{s}_j||^2}{1 + ||\vec{s}_j||^2} \frac{\vec{s}_j}{||\vec{s}_j||}$$

• Assume uniform initial routing priors, calculate \vec{v}_{j} .

$$b_{ij} = 0$$
 $c_{ij} = \operatorname{softmax}(b_{ij})$

• Update routing coefficients:

$$b_{ij} \leftarrow b_{ij} + \vec{v}_j \cdot \hat{u}_{ij}$$

Iterate 3 times.

Loss

• Two forms of loss. Margin loss:

$$L = \sum_{j} \left[T_{j} \max(0, 0.9 - ||\vec{v}_{j}||)^{2} + 0.5(1 - T_{j}) \max(0, ||\vec{v}_{j}|| - 0.1)^{2} \right]$$
$$T_{j} = \left\{ \begin{array}{c} 1 & \text{if digit present} \\ 0 & \text{otherwise} \end{array} \right\}$$

• Reconstruction loss:

Results on MNIST

- 0.25% error rate, competitive with CNNs.
- Examples of capsule pose parameters:

Scale and thickness	$\langle \varphi \rangle$	$\boldsymbol{\wp}$	6	6	6	6	6	6	6	6	6
Localized part	6	6	6	6	6	6	6	6	6	6	6
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5
Localized skew	4	Ч	Ч	Ч	Ч	Ч	Ч	4	4	4	Ц
Width and translation	"	5	3	3	3	3	3	3	3	3	3
Localized part	2	2	2	2	2	2	2	2	2	2	2

 On unseen affine transformed digits (affNIST), 79% accuracy vs 66% for CNN.

Image Segmentation

 Trained on two MNIST digits with ~80% overlap, classifies pairs with 5.2% error rate, compared to CNN error of 8.1%.

Model 2

 From "Matrix capsules with EM routing," anonymous authors (<u>openreview.net/pdf?</u> <u>id=HJWLfGWRb</u>)

- Organize pose as 4x4 matrix + activation logit instead of vector. Transformation weights are a 4x4 matrix.
- Primary capsules' poses are learned linear transform of local features. Activation is sigmoid of learned weighted sum of local features.
- Convolutional capsules share transformation weights and see poses from a local kernel.

EM Routing

- Model higher layer as mixture of Gaussians that explains lower layer's poses.
- Start with uniform routing priors c_{ij} , weight by the activations of the lower capsules a_i : $r_{ij} = c_{ij}a_i$
- Determine mean and variance:

$$\mu_{jh} = \frac{\sum_{i} r_{ij} \hat{u}_{ijh}}{\sum_{i} r_{ij}} \qquad \sigma_{jh}^2 = \frac{\sum_{i} r_{ij} \left(\hat{u}_{ijh} - \mu_{jh} \right)^2}{\sum_{i} r_{ij}} \qquad \text{per pose component } h$$

• Activate upper capsule as:

$$a_j = \text{sigmoid} \left[\lambda \left(\beta_a - \sum_h (\beta_v + \log(\sigma_{jh})) \sum_i r_{ij} \right) \right]$$

 eta_a, eta_v learned by backprop. λ fixed schedule.

• Calculate new routing coefficients:

$$p_{ij} = \frac{1}{\sqrt{2\pi\sum_{h}\sigma_{ijh}^2}} e^{\frac{-\sum_{h}(\hat{u}_{ijh}-\mu_{jh})^2}{2\sigma_{ijh}^2}} \qquad c_{ij} = \frac{a_j p_{ij}}{\sum_{j} a_j p_{ij}}$$

• Iterate 3 times.

M-

Last Layer and Loss

- Connection to class capsules uses coordinate addition scheme:
 - Weights shared across locations, like convolutional layer.
 - Explicit (x,y) offset of kernel added to first two elements of pose passed to class capsules. $D \times E_{i} \times 4 \times 4$
- Spread loss:

$$L = \sum_{j \neq t} (\max(0, m - (a_t - a_j))^2 \quad \text{for target class } t$$

Margin m increases linearly from 0.2 to 0.9 during training.

Test Dataset

 <u>smallNORB dataset</u>: 96x96 greyscale images of 5 classes of toy (airplanes, cars, trucks, humans, animals) with 10 physical instances of each toy, 18 azimuthal angles, 9 elevation angles, and 6 lighting conditions per training and test set. Total of 48,600 images each.

Results

• Downscale smallNORB to 48x48, randomly crop to 32x32.

Routing iterations	Pose structure	Loss	Coordinate Addition	Test error rate
1	Matrix	Spread	Yes	9.7%
2	Matrix	Spread	Yes	2.2%
3	Matrix	Spread	Yes	1.8 %
5	Matrix	Spread	Yes	3.9%
3	Vector	Spread	Yes	2.9%
3	Matrix	Spread	No	2.6%
3	Vector	Spread	No	3.2%
3	Matrix	Margin ²	Yes	3.2%
3	Matrix	CrossEnt	Yes	5.8%
В	5.2%			
CNN of Cireşan e	2.56%			
Our Best mode	1.4%			

Novel Viewpoints

- Case 1: train on middle 1/3 azimuthal angles, test on remaining 2/3 azimuthal angles.
- Case 2: train on lower 1/3 elevation angles, test on higher 2/3 elevation angles.

Test set	Az	zimuth	Elevation		
	CNN	Capsules	CNN	Capsules	
Novel viewpoints Familiar viewpoints	20% 3.7%	13.5% 3.7%	17.8% 4.3%	12.3% 4.3%	

Adversarial Robustness

- FGSM adversarial attack: compute gradient of output w.r.t. change in pixel intensity, then modify each pixel by small ε in direction that either (1) maximizes loss, or (2) maximizes classification probability of wrong class.
- BIM adversarial attack: same thing but with several steps.

• No improvement on images generated by adversarial CNN.

Downsides

- Capsule networks are *really* slow. Shallow EM routed network take 2 days to train on laptop, comparable CNN takes 30 minutes.
- Poor performance (~11% error) on CIFAR10; generally bad at complex images.
- Can't handle multiple copies of the same object (crowding).

Conclusions

- Capsule networks explicitly learn the relative poses of objects.
- State-of-the-art performance on image segmentation and 3D object recognition
- Poor performance on complicated images, also very slow.
- Little studied... unknown if these issues can be improved upon.

Transforming Auto-encoders

• With unlabeled data and ability to explicitly transform poses, can learn capsules via auto-encoder:

• Then connect capsules to factor analyzers, can get competitive error rate on MNIST with ~25 labelled examples.