Deep he(a)p, big feat
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Reinforcement Learning

A framework for modeling intelligent agents. An agent takes an
action depending on its state to change the environment with
the goal of maximizing their reward.

3/25



Reinforcement Learning

» bandits / Markov decision process (MDP)

> episodes and discounts

» model-based RL / model-free RL

> single-agent / multi-agent

» tabular RL / Deep RL (parameterized policies)
» discrete / continuous

» on-policy / off-policy learning

» policy gradients / Q-learning
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Markov decision process (MDP)
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Markov decision process (MDP)

states s € S

v

v

actions a € A

» transition probability p(s’|s, a)

v

rewards r(s), r(s, a), or r(s,a,s’)

It's Markov because the transition s; — s;11 only depends on s;.
It's a decision process because it depends on a.

Goal is to find policy 7(a|s) that maximizes reward over time.
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Multi-armed bandits
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Multi-armed bandits

r(ai)

Want to learn p(r|a) and maximize (r). Tradeoff between exploit
and explore.
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Episodic RL

Agent either acts until a terminal state is reached.

~ 11(s0)
ag ~ (30‘50)
ro = r(so, ao)

S~ P(51’ 50, 30)

ar—1 ~ 7T(3T—1|ST—1)
rr—1=r(sT—1,ar—1)

st~ p(sT—1|,57-1,a7-1)
The goal is to maximize total rewards

77(71') = E[ro +n+---+ rT_1]
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Discount factor

If there are no terminal states, the episode lasts “forever” and the
agent takes “infinite” actions. In this case, we maximize
discounted total rewards

T_er—l]

n(m) =n(m) = Elro +yn +~°r2- -+
with discount v = [0, 1].

Without ~,
> the agent has no incentive to do anything now.

> n will diverge.
This means that the agent has an effective time-horizon

th~1/(1—7)
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Model-based vs. Model-free

In model-based RL, we try to learn the transition function

p(s’|s, a). This let's us predict the expected next state st + 1
given state s; and action a;. This means that the agent can think
ahead and plan future actions.

In model-free RL, we either try to learn 7(a|s) directly (policy
gradient methods), or we learn a function Q(s, a) that tells us the
value of taking action a when in state s, which implies a 7(als).
This means that the agent has no “understanding” of the process
and is essentially a lookup table.
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Multi-agent RL
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Parameterized policies / Deep RL

If the total number of states is small, then Monte Carlo or dynamic
programming techniques can be used to find m(als) or Q(s, a).
These are sometimes referred to as tabular methods.

In many cases, this is intractable. Instead, we need to use a
function approximator, such as a neural network, to represent these
functions

w(als) — m(als,0), Q(s,a) — Q(s, alb)

This takes advantage of the fact that in similar states we should
take similar actions.
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Discrete vs. continuous action spaces

Similarly, agents can either select from a discrete set of actions
(i.e. left vs. right) or a continuum (steer the boat to heading 136
degrees). I'm not sure why people make a big deal out of the
difference

» discrete: 7(als) is a discreete probability distribution.

» continuous: m(als) is (just about always) Gaussian.

14 /25



On-policy vs. off-policy

If our current best policy is 7(als), do we sample from 7(als) or do
we sample from a different policy 7’(als)?

» on-policy: Learn from 7(als), then update based on what
worked well / didn't work well.

» off-policy: Learn from 7’(a|s) but update m(als), letting us
explore areas of state-action space that aren't likely to come
up with our policy. *Can also learn from old experience*
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Policy gradients

In which we just go for it and maximize the policy directly. Define

R[s(T),a ]_nyr

We want to maximize R(t), which depends on the trajectory

Von(0) = Vo E[R]
=Vo Y p(RIO)R
=Y RVup(R|0)
=Y Rp(RI#) Vg log p(R|6)
= E[R Vg log p(R|0)]
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Policy gradients

The probability of a trajectory is

T-1

p(RIO) = 1u(s0) T] m(aclse, 0) p(seslse, ar)

t=0

which means that the derivative of it's log doesn’'t depend on the
unknown transition function. This is model-free.

T-1
Vo log p(R|0) = Y Vglogm(atlst)
t=0
T-1
Von(6) = £|R Y- Vologn(ar/s)
t=0
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Policy gradients

Expressing the gradient as an expectation value means we can
sample trajectories

N

E{R Tz_:l Vo |0g77(3t’5t)} — %Z

t=0 i=1

T-1
R Z Vg log W(at‘st)]
t=0

and then do gradient descent on the policy

0 — 0 — aVen(0)

Since the gradient update is derived explicitly from trajectories
sampled from 7(a|s), clearly this method is on-policy.
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Policy gradients

Von(0) =

- T-1
EIRY Vy Iogﬂ(at]st)}

- t=0

- T—1 T-1
=E Z Vo log m(at|st) Z Y r(sy, at,)}

- t=0 t'=t

- T-1
=E Z Vo log m(at|st) Qﬂ(st,at)]
=E Z Vo log m(at|st) (Qw(st, at) — Vw(st))]

t=0

T-1
DA sy, ar), Zer st, at)m(atlst)
t'=t
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Q-learning

What if we instead learn the Q-function or state-action value
function associated with the optimal policy?

a, = argmax Qi(s, a)
a
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Q-learning is model free

Just knowing the value function V/(s) of the state for a policy isn't
enough to pick actions because we would need to know the
transition function p(s’|s, a).
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Q-learning is off-policy

Expanding the definition of Q(s;, a;), we see

Qr(se, at) = E[re + v Vr(st+1)]
Qr(st,at) = E[ft + YE[Qx(St+1, 3t+1)]}

This is known as temporal difference learning.

Now, let's find the optimal Q-function

Qu(st, ) = E[re + 7 max[Qn(st+1, 3)]|

This is Q-learning.



DQN

If we have too many states, we instead minimize the loss

L(0) = Z |re + 7y Tﬁ?[Qn(stH, ary1) — Qo(st, at)’2
t

via gradient descent

0 — 0 — aVel(6)
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Q learning II, the SQL

Define
soft max f(x) = Iog/dx ef )

Then, soft Q-learning is
Qu(st, ar) = E[re + 7y soft max Q(st+1, )]
which has optimal policy
m(als) o< exp Q(s, t).

Trade-off between optimality and entropy. Allows transfer learning
by letting policies compose.
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A Distributional Perspective on Reinforcement Learning

Learn a distribution over Q-values. Let Z(s¢, a;) have an
expectation value that is Q(s, a). Then we learn

Z(st,ar) = re +vZ(St+1, ar+1)
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