
Deep he(a)p, big feat

arXiv:1707.06887 A Distributional Perspective on Reinforcement Learning
arXiv:1702.08165 Reinforcement Learning with Deep Energy-Based Policies

1 / 25

Reinforcement Learning

Environment

Agent

A
ct
io
n

Interpreter

Reward

State

2 / 25

Reinforcement Learning

A framework for modeling intelligent agents. An agent takes an
action depending on its state to change the environment with
the goal of maximizing their reward.

3 / 25

Reinforcement Learning

I bandits / Markov decision process (MDP)
I episodes and discounts
I model-based RL / model-free RL
I single-agent / multi-agent
I tabular RL / Deep RL (parameterized policies)
I discrete / continuous
I on-policy / off-policy learning
I policy gradients / Q-learning

4 / 25

Markov decision process (MDP)

S0

a1

a0

S2

S1

a 1

a0

a0

a1

5 / 25

Markov decision process (MDP)

I states s ∈ S
I actions a ∈ A
I transition probability p(s ′|s, a)
I rewards r(s), r(s, a), or r(s, a, s ′)

It’s Markov because the transition st → st+1 only depends on st .
It’s a decision process because it depends on a.

Goal is to find policy π(a|s) that maximizes reward over time.

6 / 25

Multi-armed bandits

7 / 25

Multi-armed bandits

S

a1

a0

r(a1)

r(a0)

Want to learn p(r |a) and maximize 〈r〉. Tradeoff between exploit
and explore.

8 / 25

Episodic RL

Agent either acts until a terminal state is reached.

s0 ∼ µ(s0)
a0 ∼ π(a0|s0)
r0 = r(s0, a0)
s1 ∼ p(s1|, s0, a0)
. . .

aT−1 ∼ π(aT−1|sT−1)
rT−1 = r(sT−1, aT−1)

sT ∼ p(sT−1|, sT−1, aT−1)

The goal is to maximize total rewards

η(π) = E [r0 + r1 + · · ·+ rT−1]

9 / 25

Discount factor
If there are no terminal states, the episode lasts “forever” and the
agent takes “infinite” actions. In this case, we maximize
discounted total rewards

η(π) = η(π) = E [r0 + γr1 + γ2r2 · · ·+ γT−1rT−1]

with discount γ = [0, 1].

Without γ,
I the agent has no incentive to do anything now.
I η will diverge.

This means that the agent has an effective time-horizon

th ∼ 1/(1− γ)

10 / 25

Model-based vs. Model-free

In model-based RL, we try to learn the transition function
p(s ′|s, a). This let’s us predict the expected next state st + 1
given state st and action at . This means that the agent can think
ahead and plan future actions.

In model-free RL, we either try to learn π(a|s) directly (policy
gradient methods), or we learn a function Q(s, a) that tells us the
value of taking action a when in state s, which implies a π(a|s).
This means that the agent has no “understanding” of the process
and is essentially a lookup table.

11 / 25

Multi-agent RL

12 / 25

Parameterized policies / Deep RL

If the total number of states is small, then Monte Carlo or dynamic
programming techniques can be used to find π(a|s) or Q(s, a).
These are sometimes referred to as tabular methods.

In many cases, this is intractable. Instead, we need to use a
function approximator, such as a neural network, to represent these
functions

π(a|s)→ π(a|s, θ), Q(s, a)→ Q(s, a|θ)

This takes advantage of the fact that in similar states we should
take similar actions.

13 / 25

Discrete vs. continuous action spaces

Similarly, agents can either select from a discrete set of actions
(i.e. left vs. right) or a continuum (steer the boat to heading 136
degrees). I’m not sure why people make a big deal out of the
difference

I discrete: π(a|s) is a discreete probability distribution.
I continuous: π(a|s) is (just about always) Gaussian.

14 / 25

On-policy vs. off-policy

If our current best policy is π(a|s), do we sample from π(a|s) or do
we sample from a different policy π′(a|s)?

I on-policy: Learn from π(a|s), then update based on what
worked well / didn’t work well.

I off-policy: Learn from π′(a|s) but update π(a|s), letting us
explore areas of state-action space that aren’t likely to come
up with our policy. *Can also learn from old experience*

15 / 25

Policy gradients

In which we just go for it and maximize the policy directly. Define

R[s(T), a(T)] ≡
T∑

t=0
γtr(s(t), a(t))

We want to maximize R(t), which depends on the trajectory

∇θη(θ) = ∇θ E [R]
= ∇θ

∑
p(R|θ) R

=
∑

R∇θp(R|θ)

=
∑

R p(R|θ)∇θ log p(R|θ)
= E [R∇θ log p(R|θ)]

16 / 25

Policy gradients

The probability of a trajectory is

p(R|θ) = µ(s0)
T−1∏
t=0

π(at |st , θ) p(st+1|st , at)

which means that the derivative of it’s log doesn’t depend on the
unknown transition function. This is model-free.

∇θ log p(R|θ) =
T−1∑
t=0
∇θ log π(at |st)

∇θη(θ) = E
[

R
T−1∑
t=0
∇θ log π(at |st)

]

17 / 25

Policy gradients

Expressing the gradient as an expectation value means we can
sample trajectories

E
[

R
T−1∑
t=0
∇θ log π(at |st)

]
→ 1

N

N∑
i=1

[
R

T−1∑
t=0
∇θ log π(at |st)

]

and then do gradient descent on the policy

θ → θ − α∇θη(θ)

Since the gradient update is derived explicitly from trajectories
sampled from π(a|s), clearly this method is on-policy.

18 / 25

Policy gradients

∇θη(θ) = E
[

R
T−1∑
t=0
∇θ log π(at |st)

]

= E
[T−1∑

t=0
∇θ log π(at |st)

T−1∑
t′=t

γt′−tr(st′ , at′)
]

= E
[T−1∑

t=0
∇θ log π(at |st) Qπ(st , at)

]

= E
[T−1∑

t=0
∇θ log π(at |st)

(
Qπ(st , at)− Vπ(st)

)]

Qπ(st , at) ≡
T−1∑
t′=t

γt′−tr(st′ , at′), V (st) ≡
∑
at

Qπ(st , at)π(at |st)

19 / 25

Q-learning

What if we instead learn the Q-function or state-action value
function associated with the optimal policy?

a∗ = arg max
a

Q∗(s, a)

20 / 25

Q-learning is model free

Just knowing the value function V (s) of the state for a policy isn’t
enough to pick actions because we would need to know the
transition function p(s ′|s, a).

21 / 25

Q-learning is off-policy

Expanding the definition of Q(st , at), we see

Qπ(st , at) = E [rt + γVπ(st+1)]

Qπ(st , at) = E
[
rt + γE [Qπ(st+1, at+1)]

]
This is known as temporal difference learning.

Now, let’s find the optimal Q-function

Q∗(st , at) = E
[
rt + γmax

a
[Qπ(st+1, a)]

]
This is Q-learning.

22 / 25

DQN

If we have too many states, we instead minimize the loss

L(θ) =
∑

t
|rt + γmax

at+1
[Qπ(st+1, at+1)− Qθ(st , at)|2

via gradient descent

θ → θ − α∇θL(θ)

23 / 25

Q learning II, the SQL

Define
soft max

x
f (x) ≡ log

∫
dx ef (x)

Then, soft Q-learning is

Q∗(st , at) = E [rt + γ soft max
a

Q(st+1, a)]

which has optimal policy

π(a|s) ∝ exp Q(s, t).

Trade-off between optimality and entropy. Allows transfer learning
by letting policies compose.

24 / 25

A Distributional Perspective on Reinforcement Learning

Learn a distribution over Q-values. Let Z (st , at) have an
expectation value that is Q(s, a). Then we learn

Z (st , at) = rt + γZ (st+1, at+1)

25 / 25

