
A few meta learning
papers

Machine Learning Journal Club, September 2017

Guy Gur-Ari

Meta Learning
• Mechanisms for faster, better adaptation to new tasks

• ‘Integrate prior experience with a small amount of new
information’

• Examples: Image classifier applied to new classes,
game player applied to new games, …

• Related: single-shot learning, catastrophic forgetting

• Learning how to learn (instead of designing by hand)

Meta Learning

• Mechanisms for faster, better adaptation to new tasks

• Learning how to learn (instead of designing by hand)

• Each task is a single training sample

• Performance metric: Generalization to new tasks

• Higher derivatives show up, but first-order
approximations sometimes work well

Transfer Learning
(ad-hoc meta-learning)

Learning to learn by gradient descent  
by gradient descent

 Andrychowicz et al.

1606.04474

Basic idea

Target

parameters

Optimizer

parameters

Target (‘optimizee’)

loss function

Recurrent Neural Network m

with parameters ɸ

[1606.04474]

Vanilla RNN refresher

h

t

= tanh (W
h

h

t�1 +W

x

x

t

)

y

t

= W

y

h

t [Karpathy]

t

xt

yt

htht�1

xt�1

yt�1

mm m

t� 1 t+ 1

Backpropagation

through time

Meta loss function
Ideal

In practice

rt = r✓f(✓t) wt ⌘ 1

Optimal target parameters

for given optimizer

RNN

(2-layer LSTM)

RNN hidden

state

[1606.04474]

Meta loss function

• Recurrent network can use trajectory information, similar
to momentum

• Including historical losses also helps with backprop
through time

rt = r✓f(✓t) wt ⌘ 1

[1606.04474]

Training protocol

• Sample a random task f

• Train optimizer on f by gradient descent  
(100 steps, unroll for 20)

• Repeat

[1606.04474]

Test optimizer performance

• Sample new tasks

• Apply optimizer for some steps, compute average loss

• Compare with existing optimizers (ADAM, RMSProp)

[1606.04474]

Computational graph

Graph used for computing the gradient of the optimizer (with respect to ɸ)

(�)

[1606.04474]

(�) (�)

Simplifying assumptions

• No 2nd order derivatives:

• RNN weights shared between
target parameters

• Result is independent of
parameter ordering

• Each parameter has
separate hidden state

r�r✓f = 0

[1606.04474]

Experiments

[1606.04474]

Variability is in initial target parameters

and choice of mini-batches

Experiments

[1606.04474]

Separate optimizers for convolutional and fully-connected layers

Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks

Finn, Abbeel, Levine

1703.03400

Basic idea
• Start with a class of tasks with distribution

• Train one model 𝛳 that can be quickly fine-tuned to new
tasks (‘few-shot learning’) 
 

• How? Explicitly require that a single training step will
significantly improve the loss

• Meta loss function, optimized over 𝛳:

Ti p(T)

[1703.03400]

(to avoid overfitting?)

[1703.03400]

Comments

• Can be adapted to any scenario that uses gradient
descent (e.g. regression, reinforcement learning)

• Involves taking second derivative 
 
 

• First-order approximation still works well

[1703.03400]

Regression experiment
Single task = compute sine with given underlying amplitude and phase

Pretrained = compute a single model
on many tasks simultaneously

Model is FC network
with 2 hidden layers [1703.03400]

Classification experiment

Each classification class is a single task
[1703.03400]

RL experiment

Reward = negative square distance from goal position.
For each task, goal is placed randomly.

[1703.03400]

Overcoming catastrophic forgetting in neural
networks

Kirkpatrick et al.

1612.00796

Basic idea

• Catastrophic forgetting: When a model is trained on task
A followed by task B, it typically forgets A

• Idea: After training on A, freeze the parameters that are
important for A

[1612.00796]

hyperparameter

diagonal of

Fisher information matrix

optimal parameters

for task A

Fi ⇡
@2LA

@✓2i

Why Fisher information?
L(✓) = � log(✓|DA, DB)

= � log p(DB |✓)� log p(✓)� log p(DA|✓) + log p(DA, DB)

⇠ LB(✓)� log p(DA|✓)

now suppose p✓⇤ = pA then

F

ij

= E

x⇠p✓ [r✓i log p✓(x)r✓j log p✓(x)]

� log p(D

A

|✓) = �
X

i

log p

✓

(x

i

) ⇠ �
X

x

p

A

(x) log p

✓

(x)

�
X

x

p

✓⇤(x) log p✓⇤+d✓

(x) = S(p

✓⇤) +
1

2

d✓

T

Fd✓ + · · ·

Why Fisher information?
L(✓) ⇠ LB(✓) +

1

2
d✓TFd✓

d✓ = ✓ � ✓⇤A

MNIST experiment

