A few meta learning papers

Guy Gur-Ari

Machine Learning Journal Club, September 2017

Meta Learning

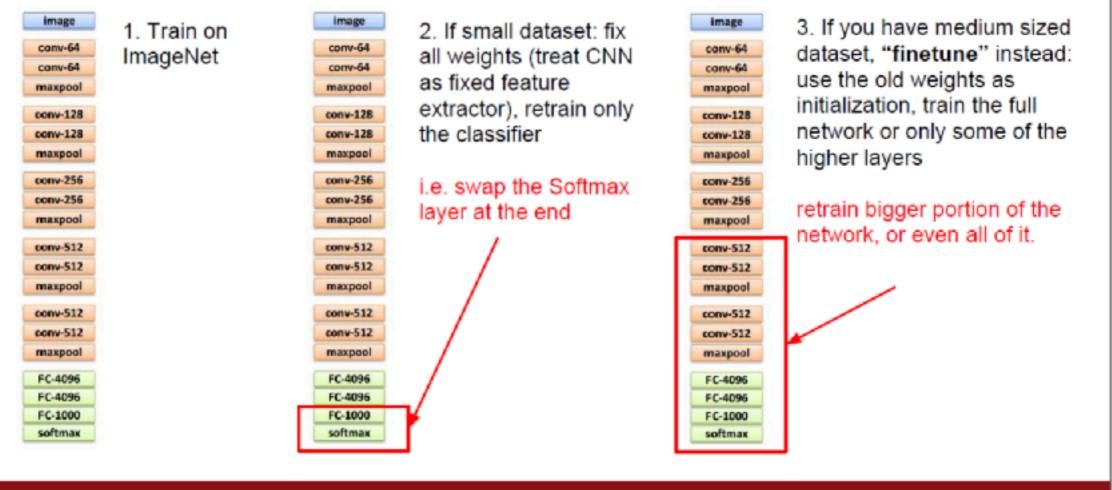
- Mechanisms for faster, better adaptation to new tasks
 - Integrate prior experience with a small amount of new information'
 - Examples: Image classifier applied to new classes, game player applied to new games, ...
 - Related: single-shot learning, catastrophic forgetting
- Learning how to learn (instead of designing by hand)

Meta Learning

- Mechanisms for faster, better adaptation to new tasks
- Learning how to learn (instead of designing by hand)
- Each task is a single training sample
- Performance metric: Generalization to new tasks
- Higher derivatives show up, but first-order approximations sometimes work well

Transfer Learning (ad-hoc meta-learning)

Transfer Learning with CNNs



Fei-Fei Li & Andrej Karpathy & Justin Johnson

20 Jan 2016

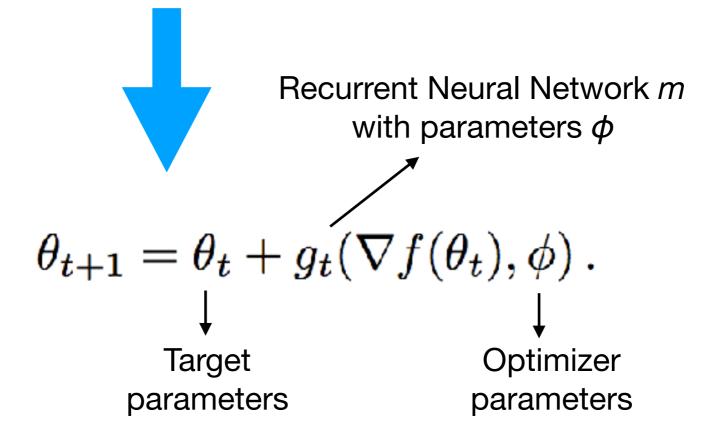
Learning to learn by gradient descent by gradient descent

Andrychowicz et al.

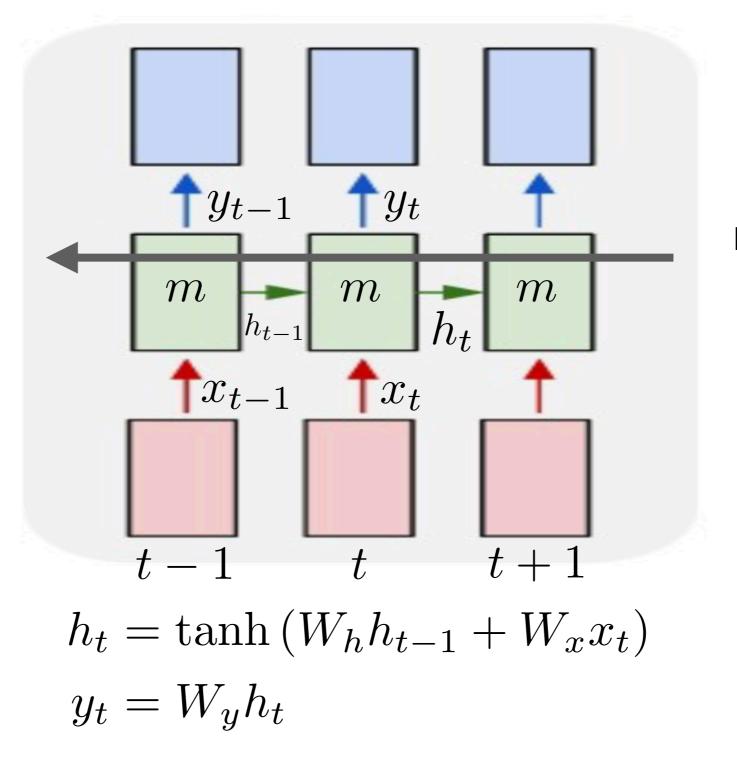
1606.04474

Basic idea

Target ('optimizee') loss function $\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t) \,.$



Vanilla RNN refresher



Backpropagation through time

[Karpathy]

Meta loss function

Ideal

$$\mathcal{L}(\phi) = \mathbb{E}_f \Big[f \big(\theta^*(f, \phi) \big) \Big]$$

Optimal target parameters for given optimizer

In practice

Meta loss function

$$\begin{split} \mathcal{L}(\phi) &= \mathbb{E}_f \left[\sum_{t=1}^T w_t f(\theta_t) \right] \quad \text{where} \quad \begin{array}{l} \theta_{t+1} &= \theta_t + g_t \,, \\ \left[\begin{matrix} g_t \\ h_{t+1} \end{matrix} \right] &= m(\nabla_t, h_t, \phi) \\ \nabla_t &= \nabla_\theta f(\theta_t) \quad w_t \equiv 1 \end{split}$$

- Recurrent network can use trajectory information, similar to momentum
- Including historical losses also helps with backprop through time

Training protocol

- Sample a random task f
- Train optimizer on *f* by gradient descent (100 steps, unroll for 20)

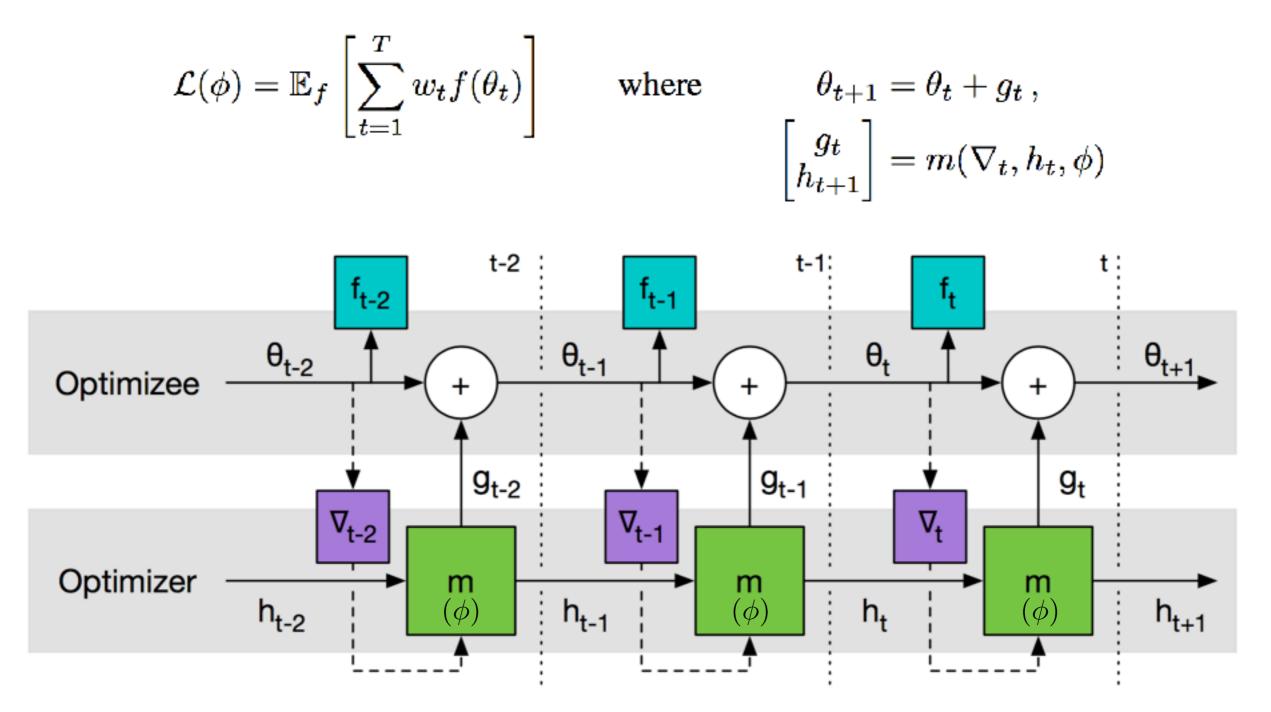
$$\begin{split} \mathcal{L}(\phi) = \mathbb{E}_f \left[\sum_{t=1}^T w_t f(\theta_t) \right] & \text{ where } & \theta_{t+1} = \theta_t + g_t \,, \\ \left[\begin{matrix} g_t \\ h_{t+1} \end{matrix} \right] = m(\nabla_t, h_t, \phi) \end{split}$$

• Repeat

Test optimizer performance

- Sample new tasks
- Apply optimizer for some steps, compute average loss
- Compare with existing optimizers (ADAM, RMSProp)

Computational graph



Graph used for computing the gradient of the **optimizer** (with respect to ϕ) [1606.04474]

Simplifying assumptions

- No 2nd order derivatives: $\nabla_{\phi} \nabla_{\theta} f = 0$
- RNN weights shared between target parameters
 - Result is independent of parameter ordering
 - Each parameter has separate hidden state

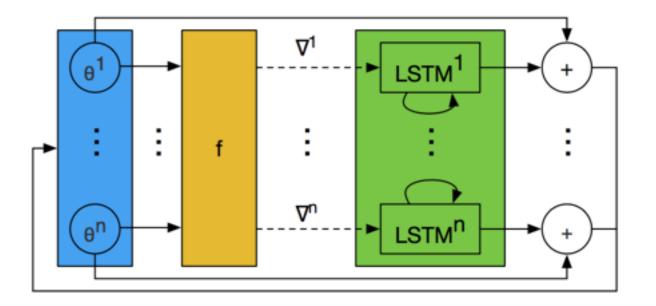


Figure 3: One step of an LSTM optimizer. All LSTMs have shared parameters, but separate hidden states.

Experiments

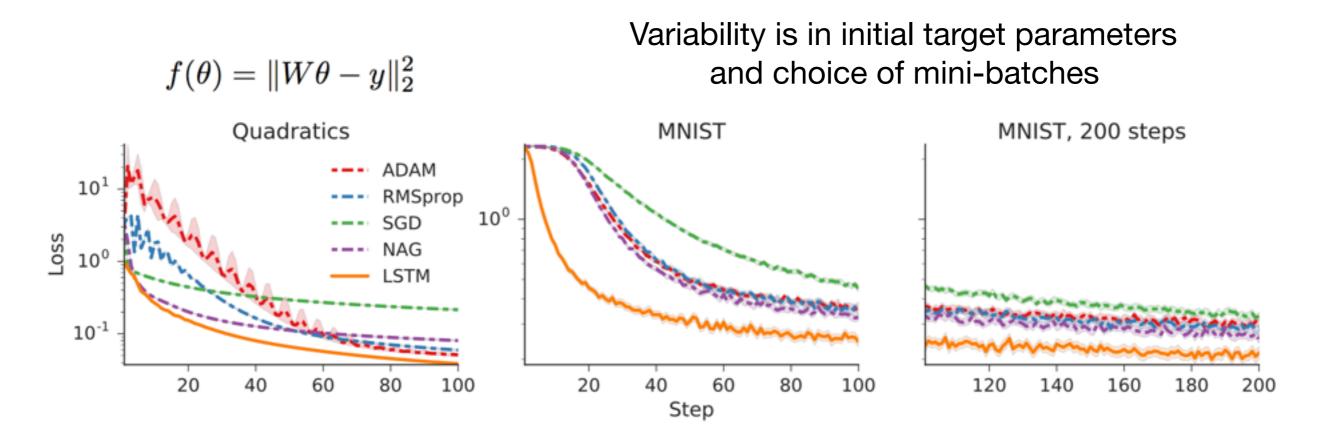


Figure 4: Comparisons between learned and hand-crafted optimizers performance. Learned optimizers are shown with solid lines and hand-crafted optimizers are shown with dashed lines. Units for the y axis in the MNIST plots are logits. Left: Performance of different optimizers on randomly sampled 10-dimensional quadratic functions. Center: the LSTM optimizer outperforms standard methods training the base network on MNIST. Right: Learning curves for steps 100-200 by an optimizer trained to optimize for 100 steps (continuation of center plot).

Experiments

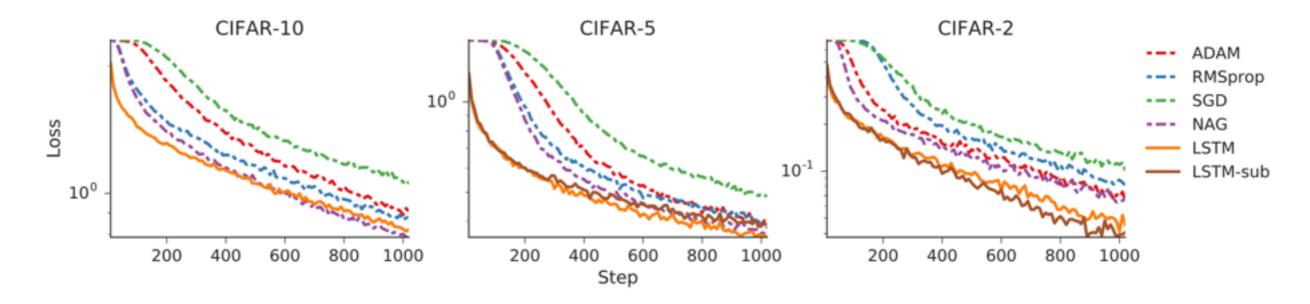


Figure 7: Optimization performance on the CIFAR-10 dataset and subsets. Shown on the left is the LSTM optimizer versus various baselines trained on CIFAR-10 and tested on a held-out test set. The two plots on the right are the performance of these optimizers on subsets of the CIFAR labels. The additional optimizer *LSTM-sub* has been trained only on the heldout labels and is hence transferring to a completely novel dataset.

Separate optimizers for convolutional and fully-connected layers

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Finn, Abbeel, Levine

1703.03400

Basic idea

- Start with a class of tasks \mathcal{T}_i with distribution $p(\mathcal{T})$
- Train one model θ that can be quickly fine-tuned to new tasks ('few-shot learning')

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$$

- How? Explicitly require that a single training step will significantly improve the loss
- Meta loss function, optimized over θ :

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = {\mathbf{x}^{(j)}, \mathbf{y}^{(j)}}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$
- 8: Sample datapoints $\mathcal{D}'_i = {\mathbf{x}^{(j)}, \mathbf{y}^{(j)}}$ from \mathcal{T}_i for the meta-update (to avoid overfitting?)
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

$$\mathcal{L}_{\mathcal{T}_{i}}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_{i}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$
(3)

Comments

- Can be adapted to any scenario that uses gradient descent (e.g. regression, reinforcement learning)
- Involves taking second derivative

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

• First-order approximation still works well

Regression experiment

Single task = compute sine with given underlying amplitude and phase

$$\mathcal{L}_{\mathcal{T}_i}(f_\phi) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_\phi(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2, \qquad (2)$$

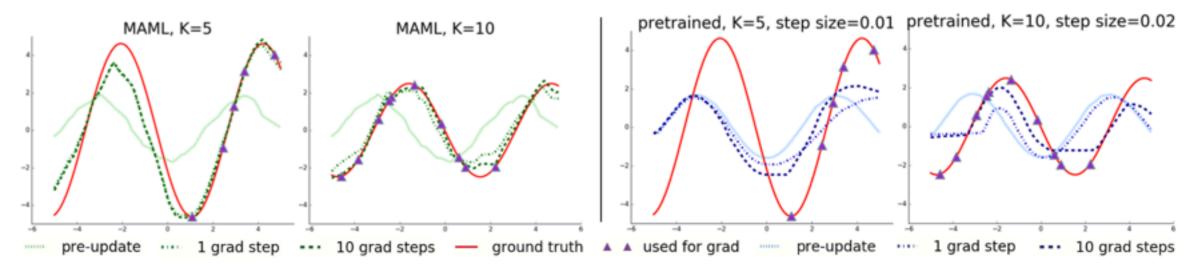


Figure 2. Few-shot adaptation for the simple regression task. Left: Note that MAML is able to estimate parts of the curve where there are no datapoints, indicating that the model has learned about the periodic structure of sine waves. Right: Fine-tuning of a model pretrained on the same distribution of tasks without MAML, with a tuned step size. Due to the often contradictory outputs on the pre-training tasks, this model is unable to recover a suitable representation and fails to extrapolate from the small number of test-time samples.

Model is FC network with 2 hidden layers

Pretrained = compute a single model on many tasks simultaneously

Classification experiment

Table 1. Few-shot classification on held-out Omniglot characters (top) and the MiniImagenet test set (bottom). MAML achieves results that are comparable to or outperform state-of-the-art convolutional and recurrent models. Siamese nets, matching nets, and the memory module approaches are all specific to classification, and are not directly applicable to regression or RL scenarios. The \pm shows 95% confidence intervals over tasks. Note that the Omniglot results may not be strictly comparable since the train/test splits used in the prior work were not available. The MiniImagenet evaluation of baseline methods and matching networks is from Ravi & Larochelle (2017).

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	-
MAML, no conv (ours)	$89.7 \pm \mathbf{1.1\%}$	$97.5 \pm \mathbf{0.6\%}$	_	-
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm \mathbf{0.4\%}$	$99.9 \pm \mathbf{0.1\%}$	$95.8 \pm \mathbf{0.3\%}$	$98.9 \pm \mathbf{0.2\%}$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	${f 48.07 \pm 1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm \mathbf{1.84\%}$	$63.11 \pm \mathbf{0.92\%}$	

Each classification class is a single task

RL experiment



Figure 4. Top: quantitative results from 2D navigation task, Bottom: qualitative comparison between model learned with MAML and with fine-tuning from a pretrained network.

Reward = negative square distance from goal position. For each task, goal is placed randomly.

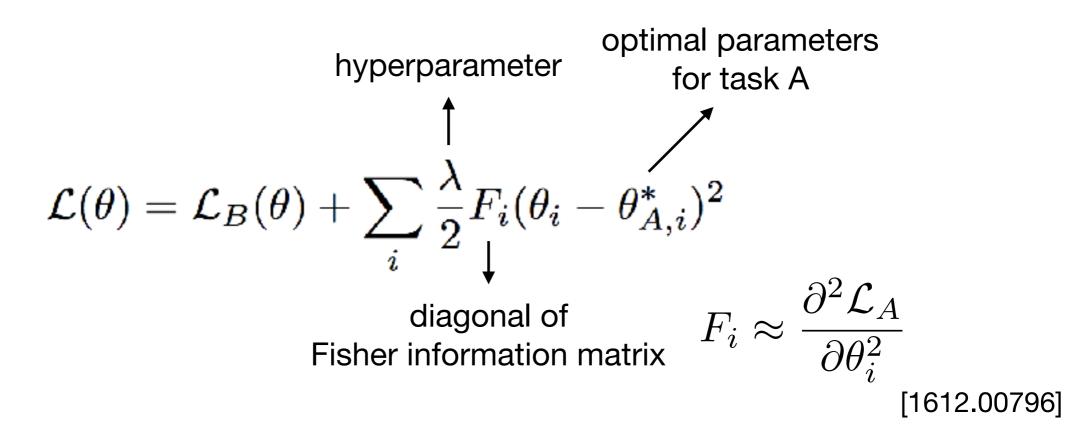
Overcoming catastrophic forgetting in neural networks

Kirkpatrick et al.

1612.00796

Basic idea

- Catastrophic forgetting: When a model is trained on task A followed by task B, it typically forgets A
- Idea: After training on A, freeze the parameters that are important for A



Why Fisher information?

$$\mathcal{L}(\theta) = -\log(\theta | D_A, D_B)$$

= $-\log p(D_B | \theta) - \log p(\theta) - \log p(D_A | \theta) + \log p(D_A, D_B)$
 $\sim \mathcal{L}_B(\theta) - \log p(D_A | \theta)$

$$-\log p(D_A|\theta) = -\sum_i \log p_\theta(x_i) \sim -\sum_x p_A(x) \log p_\theta(x)$$

now suppose $p_{\theta_*} = p_A$ then

$$-\sum_{x} p_{\theta_*}(x) \log p_{\theta_* + d\theta}(x) = S(p_{\theta_*}) + \frac{1}{2} d\theta^T F d\theta + \cdots$$

$$F_{ij} = E_{x \sim p_{\theta}} [\nabla_{\theta_i} \log p_{\theta}(x) \nabla_{\theta_j} \log p_{\theta}(x)]$$

Why Fisher information?

$$\mathcal{L}(\theta) \sim \mathcal{L}_B(\theta) + \frac{1}{2} d\theta^T F d\theta$$

 $d\theta = \theta - \theta_A^*$

$$\mathcal{L}(heta) = \mathcal{L}_B(heta) + \sum_i rac{\lambda}{2} F_i (heta_i - heta^*_{A,i})^2$$

MNIST experiment

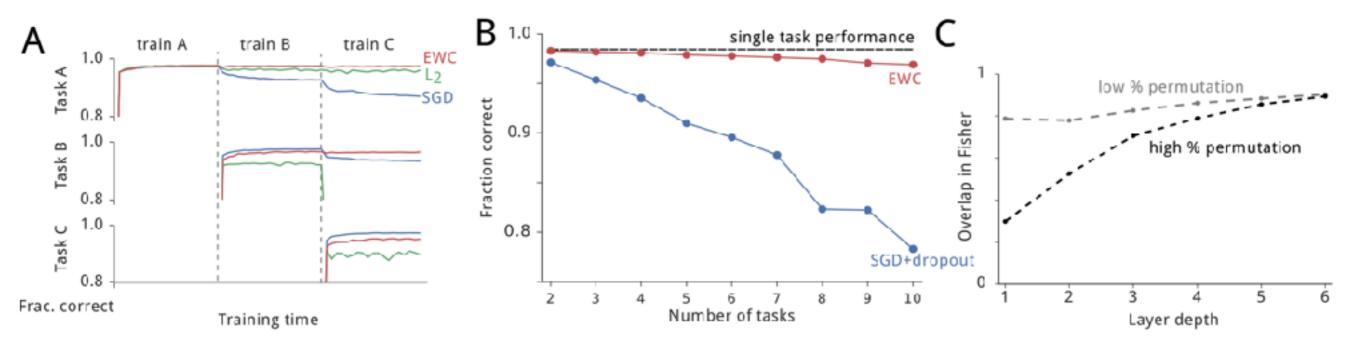


Figure 2: Results on the permuted MNIST task. A: Training curves for three random permutations A, B and C using EWC(red), L_2 regularization (green) and plain SGD(blue). Note that only EWC is capable of mantaining a high performance on old tasks, while retaining the ability to learn new tasks. B: Average performance across all tasks using EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance on a single task only. C: Similarity between the Fisher information matrices as a function of network depth for two different amounts of permutation. Either a small square of 8x8 pixels in the middle of the image is permuted (grey) or a large square of 26x26 pixels is permuted (black). Note how the more different the tasks are, the smaller the overlap in Fisher information matrices in early layers.