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Meta Learning
• Mechanisms for faster, better adaptation to new tasks


• ‘Integrate prior experience with a small amount of new 
information’


• Examples: Image classifier applied to new classes, 
game player applied to new games, …


• Related: single-shot learning, catastrophic forgetting


• Learning how to learn (instead of designing by hand)



Meta Learning

• Mechanisms for faster, better adaptation to new tasks


• Learning how to learn (instead of designing by hand)


• Each task is a single training sample


• Performance metric: Generalization to new tasks


• Higher derivatives show up, but first-order 
approximations sometimes work well



Transfer Learning 
(ad-hoc meta-learning)



Learning to learn by gradient descent  
by gradient descent 

 Andrychowicz et al. 

1606.04474



Basic idea
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Vanilla RNN refresher
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Meta loss function
Ideal

In practice 

rt = r✓f(✓t) wt ⌘ 1

Optimal target parameters

for given optimizer

RNN

(2-layer LSTM)

RNN hidden

state
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Meta loss function

• Recurrent network can use trajectory information, similar 
to momentum


• Including historical losses also helps with backprop 
through time

rt = r✓f(✓t) wt ⌘ 1

[1606.04474]



Training protocol

• Sample a random task f


• Train optimizer on f by gradient descent  
(100 steps, unroll for 20)


• Repeat

[1606.04474]



Test optimizer performance

• Sample new tasks  

• Apply optimizer for some steps, compute average loss


• Compare with existing optimizers (ADAM, RMSProp)

[1606.04474]



Computational graph

Graph used for computing the gradient of the optimizer (with respect to ɸ)
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[1606.04474]
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Simplifying assumptions

• No 2nd order derivatives:


• RNN weights shared between 
target parameters


• Result is independent of 
parameter ordering


• Each parameter has 
separate hidden state

r�r✓f = 0

[1606.04474]



Experiments

[1606.04474]

Variability is in initial target parameters

and choice of mini-batches



Experiments

[1606.04474]

Separate optimizers for convolutional and fully-connected layers



Model-Agnostic Meta-Learning for Fast 
Adaptation of Deep Networks 

Finn, Abbeel, Levine 

1703.03400



Basic idea
• Start with a class of tasks       with distribution 


• Train one model 𝛳 that can be quickly fine-tuned to new 
tasks (‘few-shot learning’) 
 

• How? Explicitly require that a single training step will 
significantly improve the loss


• Meta loss function, optimized over 𝛳:

Ti p(T )

[1703.03400]



(to avoid overfitting?)

[1703.03400]



Comments

• Can be adapted to any scenario that uses gradient 
descent (e.g. regression, reinforcement learning)


• Involves taking second derivative 
 
 

• First-order approximation still works well

[1703.03400]



Regression experiment
Single task = compute sine with given underlying amplitude and phase

Pretrained = compute a single model  
on many tasks simultaneously

Model is FC network 
with 2 hidden layers [1703.03400]



Classification experiment

Each classification class is a single task
[1703.03400]



RL experiment

Reward = negative square distance from goal position.  
For each task, goal is placed randomly.

[1703.03400]



Overcoming catastrophic forgetting in neural 
networks 

Kirkpatrick et al. 

1612.00796



Basic idea

• Catastrophic forgetting: When a model is trained on task 
A followed by task B, it typically forgets A


• Idea: After training on A, freeze the parameters that are 
important for A

[1612.00796]
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Why Fisher information?
L(✓) = � log(✓|DA, DB)
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Why Fisher information?
L(✓) ⇠ LB(✓) +

1

2
d✓TFd✓

d✓ = ✓ � ✓⇤A



MNIST experiment




