A few meta learning
papers

Guy Gur-Ari

Machine Learning Journal Club, September 2017

Meta Learning

e Mechanisms for faster, better adaptation to new tasks

e ‘Integrate prior experience with a small amount of new
information’

e Examples: Image classifier applied to new classes,
game player applied to new games, ...

e Related: single-shot learning, catastrophic forgetting

e |earning how to learn (instead of designing by hand)

Meta Learning

Mechanisms for faster, better adaptation to new tasks
Learning how to learn (instead of designing by hand)
Each task is a single training sample

Performance metric: Generalization to new tasks

Higher derivatives show up, but first-order
approximations sometimes work well

Transfer Learning
(ad-hoc meta-learning)

Transfer Learning with CNNs
e 1. Train on oy 2. If small dataset: fix g 3. If you have medium sized
conv-64 conv-64 . cony-64 “wge " .
e IMageNet all weights (treat CNN dataset, “finetune” instead.
po— mopool @S fixed feature mapost . USE the old weights as
conv-128 =i extractor), retrain only — Initialization, train the full
conv-128 conv-128 the classifier conv-128 network or only some of the
maxpool maxpool o higher layers
—— i ie. swap the Softmax 20
v — layer at the end :':::. retrain bigger portion of the

network, or even all of it

conw-512 conv-512 conv-512
oonv-512 conv-512 conv-512
maxpool maxpool maxpool
conv-512 conw-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpoal
FC-4096 FC 2096 FC-4096
FC-4096 FC-3096 FC-4096
FC-1000 FC-1000 FC-1000
softmax softmax softmax

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 6 20 Jan 2016

Learning to learn by gradient descent
by gradient descent

Andrychowicz et al.

1606.04474

Basic idea

Target (‘optimizee’)
loss function

!
9t—|—1 — 9t — OftVf(gt) .

Recurrent Neural Network m
with parameters ¢

el

011 = Tt +9:(V f(6:),0).
}

Target Optimizer
parameters parameters

[1606.04474]

Vanilla RNN refresher

T Yt—1 T Yt T |
Backpropagation

m - m m through time

t—1 t t+1
ht — tanh (Whht—l -+ le’t)

gt = Wy ht [Karpathy]

Meta loss function

Ideal

£(¢) = By [f((i* (1. 9))]

Optimal target parameters
for given optimizer

In practice

-]
L(p) =Es Z wy f(0:) where Oip1 = 0 + g4,
t—1 _

{ gt] = m(Vy, hy, @)

hit1

Vi = Vof(6;) wy = 1 / \‘
RNN RNN hidden
(2-layer LSTM) state

[1606.04474]

Meta loss function

- _
£(0) = By Z we f(0:) where Oty1 = 0s + gs
t=1 |
|:hfgt.t 1] = m(Vy, ht, ¢)

* Recurrent network can use trajectory information, similar
to momentum

* |Including historical losses also helps with backprop
through time

[1606.04474]

Training protocol

e Sample a random task f

* Train optimizer on f by gradient descent
(100 steps, unroll for 20)

-]
L(p) =Es Z wy f(0;) where Ocp1 = 0 + g4,
t=1 _
{hff 1] = m(Vy, hy, @)
e Repeat

[1606.04474]

Test optimizer performance

e Sample new tasks
e Apply optimizer for some steps, compute average loss

e Compare with existing optimizers (ADAM, RMSProp)

[1606.04474]

Computational graph

L(¢) =Ef

z wtf(f)t)
| t=1 _

Optimizee

where 0111 = 0: + g4,
[hfj—l] = m(Vy, he, @)

Optimizer

Graph used for computing the gradient of the optimizer (with respect to @)

[1606.04474]

Simplifying assumptions

e No 2nd order derivatives: \/cb\/@f — (O

e RNN weights shared between
target parameters) IR B .@
-
e Result is independent of S | :
parameter ordering >
D el -
e Each parameter has 1

separate hidden state
Figure 3: One step of an LSTM optimizer. All

L.STMs have shared parameters, but separate hid-
den states.

[1606.04474]

Experiments

£(6)=1Wo —yl3

Quadratics

Variabillity is in initial target parameters
and choice of mini-batches

MNIST

MNIST, 200 steps

-
ﬂ'*\‘~’

~
Ll N PN

e T T

(oS T .
R AN a i By gt

Step

Figure 4: Comparisons between learned and hand-crafted optimizers performance. Learned optimiz-
ers are shown with solid lines and hand-crafted optimizers are shown with dashed lines. Units for the
y axis in the MNIST plots are logits. Left: Performance of different optimizers on randomly sampled
10-dimensional quadratic functions. Center: the LSTM optimizer outperforms standard methods
training the base network on MNIST. Right: Learning curves for steps 100-200 by an optimizer
trained to optimize for 100 steps (continuation of center plot).

[1606.04474]

Experiments

CIFAR-10 CIFAR-5 CIFAR-2
N [T - ADAM

- RMSprop

- SGD

- NAG

—— LSTM

' w— LSTM-sub

Loss

200 400 600 800 1000 200 400 600 860 1000
Step

Figure 7: Optimization performance on the CIFAR-10 dataset and subsets. Shown on the left is the
LSTM optimizer versus various baselines trained on CIFAR-10 and tested on a held-out test set. The
two plots on the right are the performance of these optimizers on subsets of the CIFAR labels. The
additional optimizer LSTM-sub has been trained only on the heldout labels and is hence transferring
to a completely novel dataset.

Separate optimizers for convolutional and fully-connected layers

[1606.04474]

Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks

Finn, Abbeel, Levine

1703.03400

Basic idea

Start with a class of tasks 7; with distribution p(7)

Train one model O that can be quickly fine-tuned to new
tasks (‘few-shot learning’)

How? Explicitly require that a single training step will
significantly improve the loss

Meta loss function, optimized over 6.

min Y Lr(fo)= Y Lr(fo-aVerr (f)
Ti~p(T) Ti~p(T)
[1703.03400]

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «, (3: step size hyperparameters
1: randomly initialize &
2: while not done do
3: Sample batch of tasks 7; ~ p(7T)

4: for all '7; do

5: Sample K datapoints D = {x‘), y\} from 7;

6: Evaluate Vo L7, (fo) using D and L7, in Equation (2)
or (3)

7: Compute adapted parameters with gradient descent:
0; = 0 —aVoLr,(fe)

8: Sample datapoints D) = {x\9), yW)} from 7; for the
meta-update (to avoid overfitting?)

9: end for

10: Update 0 <~ 0 — BV > r) £7: (fo:) using each D;
and L7, m Equation 2 or 3
11: end while

[1703.03400]

Comments

e Can be adapted to any scenario that uses gradient
descent (e.g. regression, reinforcement learning)

e |nvolves taking second derivative

min } Ly(fo)= D Lr(fo-avecr(sa)

Ti~p(T) Ti~p(T)

e First-order approximation still works well

[1703.03400]

Regression experiment

Single task = compute sine with given underlying amplitude and phase

Lr(fs)= > IfeExY) =y D3, @

MAML, K=5 MAML, K=10 pretrained, K=5, step size=0.01 pretrained, K=10, step size=0.02

pre-update -+ 1lgradstep ==+ 10gradsteps =-— groundtruth 4 a used for grad pre-update ++ 1lgradstep =--- 10 grad steps

Figure 2. Few-shot adaptation for the simple regression task. Left: Note that MAML is able to estimate parts of the curve where there are
no datapoints, indicating that the model has learned about the periodic structure of sine waves. Right: Fine-tuning of a model pretrained
on the same distribution of tasks without MAML, with a tuned step size. Due to the often contradictory outputs on the pre-training tasks,
this model is unable to recover a suitable representation and fails to extrapolate from the small number of test-time samples.

Model is FC network Pretrained = compute a single model

with 2 hidden layers on many tasks simultaneously (1703.03400]

Classification experiment

Table 1. Few-shot classification on held-out Omniglot characters (top) and the Minilmagenet test set (bottom). MAML achieves results
that are comparable to or outperform state-of-the-art convolutional and recurrent models. Siamese nets, matching nets, and the memory
module approaches are all specific to classification, and are not directly applicable to regression or RL scenarios. The = shows 95%
confidence intervals over tasks. Note that the Omniglot results may not be strictly comparable since the train/test splits used in the prior
work were not available. The Minilmagenet evaluation of baseline methods and matching networks 1s from Ravi & Larochelle (2017).

S-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% — -

[MAML, no conv (ours) 89.7 £1.1% | 97.5 £ 0.6% — -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 9R.4% 99.6% 95.0% 98.6%
MAML (ours) 98.74+0.4% | 99.94+0.1% | 95.8 =0.3% | 98.94 0.2%

S-way Accuracy
Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot
fine-tuning baseline 28.86 £ 0.5647% | 49.79 £ 0.79%
nearest neighbor baseline 41.08 = 0.70% | 51.04 = 0.65%
- matching nets (Vinyals et al., 2016) 43.56 + 0.81% | 55.31 = 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 + 0.77%

60.60 = 0.71%

MAML, first order approx. (ours)

48.07 -+ 1.75%

63.15 1+ 0.91%

MAML (ours)

48.70 1+ 1.84%

63.11 1+ 0.92%

Each classification class is a single task

[1703.03400]

RL experiment

ol —— e e e

o —e— MAML (ours) :

- .

N --&-- pretrained >

3 o random

— 1n! _ -) - /’ __________ -

- a0 == oracle e g——

5 o a—

) -

S

T I

i . L - w

- e

> |

T -10°

0 1 2
number of gradient steps
06, MAML . _ . ' pretrained
osl pre-update || os [\._\’\ .)
04| — 3 steps { 04 J—
03| = * % goal position || o3 L:;:\‘
(U] ~— 02 . S a
o1} ‘\\\\ i o1 prE'Upcate e
ool R - | ool | — 3 steps
osl | -o1| % H goal position
-0 2 .

04 3 3 21 80 o1 03 5y =05 =04 =03 0.2 -0 3. 01 02 0.3

Figure 4. Top: quantitative results from 2D navigation task, Bot-
tom: qualitative comparison between model learned with MAML
and with fine-tuning from a pretrained network.

Reward = negative square distance from goal position.

For each task, goal is placed randomly.
[1703.03400]

Overcoming catastrophic forgetting in neural
networks

Kirkpatrick et al.

1612.00796

Basic idea

e (Catastrophic forgetting: When a model is trained on task
A followed by task B, it typically forgets A

e |dea: After training on A, freeze the parameters that are
important for A

optimal parameters
hyperparameter for task A

!
A /)
L(0) = Lp(#)+ Z 5?(92‘ — 0% ;)

2
diagonal of Foa 0°L
. . . . T 9
Fisher information matrix 89i

[1612.00796]

Why Fisher information?

L(0) = —log(0|D 4, D5g)
~ Lp(0) —logp(Dal0)

—logp(Dalf) = Zlogpe Ti) ~ —Zm) log py(z
now suppose pPg. — P A then

1
—Zpg 1()gp9 —|—d9() S(pe*)—l—§d9TFd(9—|—"'

Fz’j — E:vrvpg I:vez 10gp9 (aj)vej 10gp9 (,CI?)]

Why Fisher information?

1
L(0) ~ Lp(0) + §d9TFd9

9 = 0 — 07,

v

L(0) = Lg(0 +Z CF(0: — 04 ,)?

MNIST experiment

1.0 4 single task performance C
train A train & train C B g g i e e P L OT AT i
].0 - ‘ ‘/.I" o o e i~ —.—__.__ —
< | 5 ~ W 1
, —) — \‘\ L\r- (_ O -
x . A — N . permutatior
8 . SGD - AN o e - - ::‘_";-:"—‘
= flﬂ - ' | 5 \\‘ — *TT _ee="
i | S 0.9 —— 2 -
o 1.0 R : e < \\\‘ 5 .- high % permutation
4 ————— — = \. (= e’
s . ! .3 \\ a 4
0.8 - . . m \ Q 1 ’
: | - \.—Q\ ; t'
1.0 - ‘ ? ™ 3 |
:’ ,) prm— 0.8 N\ (@)
.3 (SGD+dropou:
0.8 - . T T T T T T T T T 0 L : ' v
2 3 4 S b 7 8 E] 10 1 2 3 < 5 6

Frac, correct

Training time Number of tasks Layer depth

Figure 2: Results on the permuted MNIST task. A: Training curves for three random permutations A, B and C
using EWC(red), L2 regularization (green) and plain SGD(blue). Note that only EWC is capable of mantaining
a high performance on old tasks, while retaining the ability to learn new tasks. B: Average performance across
all tasks using EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance
on a single task only. C: Similarity between the Fisher information matrices as a function of network depth for
two diffcrent amounts of pcrmutation. Either a small square of 8x8 pixcls in the middlec of the image 1s permuted
(grey) or a large square of 26x26 pixels is permuted (black). Note how the more different the tasks are, the
smaller the overlap in Fisher information matrices in early layers.

